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GARBAGE COLLECTION IN A STORAGE
SYSTEM

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of U.S. patent applica-
tion Ser. No. 14/015,308, entitled “GARBAGE COLLEC-
TION IN A STORAGE SYSTEM”, filed Aug. 30, 2013, now
U.S. Pat. No. 8,886,691, a continuation of U.S. patent appli-
cation Ser. No. 13/340,119, entitled “GARBAGE COLLEC-
TION IN A STORAGE SYSTEM”, filed Dec. 29, 2011, now
U.S. Pat. No. 8,527,544, a continuation-in-part of U.S. patent
application Ser. No. 13/250,570, entitled “METHOD FOR
REMOVING DUPLICATE DATA FROM A STORAGE
ARRAY?, filed Sep. 30, 2011, and a continuation-in-part of
U.S. patent application Ser. No. 13/208,094, entitled “LOGI-
CAL SECTOR MAPPING IN A FLASH STORAGE
ARRAY?”, filed Aug. 11, 2011, now U.S. Pat. No. 8,788,788,
and a continuation-in-part of U.S. patent application Ser. No.
13/211,288, entitled “MAPPING IN A STORAGE SYS-
TEM?”, filed Aug. 16, 2011, now U.S. Pat. No. 8,806,160, and
a continuation-in-part of U.S. patent application Ser. No.
13/250,579, entitled “VARIABLE LENGTH ENCODING
IN' A STORAGE SYSTEM?”, filed Sep. 30, 2011, now U.S.
Pat. No. 8,793,467, and a continuation-in-part of U.S. patent
application Ser. No. 13/273,858, entitled “METHOD FOR
MAINTAINING MULTIPLE FINGERPRINT TABLES IN
A DEDUPLICATING STORAGE SYSTEM?”, filed Oct. 14,
2011, now U.S. Pat. No. 8,589,640, each of the foregoing
applications being incorporated herein by reference in their
entirety.

BACKGROUND

1. Field of the Invention

This invention relates to computer networks and, more
particularly, to maintaining a mapping structure in a storage
system.

2. Description of the Related Art

As computer memory storage and data bandwidth
increase, so does the amount and complexity of data that
businesses daily manage. Large-scale distributed storage sys-
tems, such as data centers, typically run many business opera-
tions. A datacenter, which also may be referred to as a server
room, is a centralized repository, either physical or virtual, for
the storage, management, and dissemination of data pertain-
ing to one or more businesses. A distributed storage system
may be coupled to client computers interconnected by one or
more networks. If any portion of the distributed storage sys-
tem has poor performance, company operations may be
impaired. A distributed storage system therefore maintains
high standards for data availability and high-performance
functionality.

The distributed storage system comprises physical vol-
umes, which may be hard disks, solid-state devices, storage
devices using another storage technology, or partitions of a
storage device. Software applications, such as a logical vol-
ume manager or a disk array manager, provide a means of
allocating space on mass-storage arrays. In addition, this
software allows a system administrator to create units of
storage groups including logical volumes. Storage virtualiza-
tion provides an abstraction (separation) of logical storage
from physical storage in order to access logical storage with-
out end-users identifying physical storage.

To support storage virtualization, a volume manager per-
forms input/output (I/0) redirection by translating incoming

20

25

35

40

45

65

2

1/0 requests using logical addresses from end-users into new
requests using addresses associated with physical locations in
the storage devices. As some storage devices may include
additional address translation mechanisms, such as address
translation layers which may be used in solid state storage
devices, the translation from a logical address to another
address mentioned above may not represent the only or final
address translation. Redirection utilizes metadata stored in
one or more mapping tables. In addition, information stored
in one or more mapping tables may be used for storage dedu-
plication and mapping virtual sectors at a specific snapshot
level to physical locations. The volume manager may main-
tain a consistent view of mapping information for the virtu-
alized storage. However, a supported address space may be
limited by a storage capacity used to maintain a mapping
table.

The technology and mechanisms associated with chosen
storage disks determines the methods used by a volume man-
ager. For example, a volume manager that provides mappings
for a granularity level of a hard disk, a hard disk partition, or
a logical unit number (LUN) of an external storage device is
limited to redirecting, locating, removing duplicate data, and
so forth, for large chunks of data. One example of another
type of storage disk is a Solid-State Disk (SSD). An SSD may
emulate a HDD interface, but an SSD utilizes solid-state
memory to store persistent data rather than electromechanical
devices as found in a HDD. For example, an SSD may com-
prise banks of Flash memory. Accordingly, a large supported
address space by one or more mapping tables may not be
achieved in systems comprising SSDs for storage while uti-
lizing mapping table allocation algorithms developed for
HDDs.

One important process related to data storage is that of
garbage collection. Garbage collection is a process in which
storage locations are freed and made available for reuse by the
system. In the absence of garbage collection, all storage loca-
tions will eventually appear to be in use and it will no longer
be possible to allocate storage. Often times, there is signifi-
cant overhead associated with performing garbage collection
and overall system performance can be adversely impacted.
Consequently, how and when garbage collection is performed
is important.

In view of the above, systems and methods for efficiently
performing garbage collection in storage devices are desired.

SUMMARY OF EMBODIMENTS

Various embodiments of a computer system and methods
for performing garbage collection in a data storage system are
contemplated.

A system is contemplated which includes a storage
medium, a first table including entries which map virtual
addresses to locations in the storage medium, and a second
table with entries which include reverse mappings of a physi-
cal address in a data storage medium to one or more virtual
addresses. A data storage controller in the system is config-
ured to perform garbage collection. During garbage collec-
tion, the controller is configured to identify one or more
entries in the second table which correspond to a segment to
be garbage collected. In response to determining the first table
includes a valid mapping for a virtual address included in an
entry of the one of the one or more entries, the controller is
configured to copy data from a first location identified in the
entry to a second location in the data storage medium, and
reclaim the first storage location.

In various embodiments, the storage controller creates a
sorted list of entries from the second table which is then used
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to build a list of data locations in the segment which are
currently in use. Having identified locations which remain in
use, the controller copies data in these locations to a new
segment. Reclamation of the storage location may be per-
formed at a later time.

Also contemplated are embodiments in which the control-
ler deduplicates data corresponding to locations that are to be
copied to a new segment. If the data can be deduplicated, a
new entry is added to the second table which maps a virtual
address to the new location. If the deduplicated data has not
yet been written, it is first written to a new location.

In some embodiments, data in the first table is organized as
aplurality of time ordered levels. In such embodiments, when
the controller copies data from the first location to a second
location, it adds a new entry corresponding to the second
location to the first table in a newer time-ordered level than
that containing the entry corresponding to the first location. In
various embodiments, the controller is also configured to
detect and correct errors in garbage collected data that is
being relocated.

These and other embodiments will become apparent upon
consideration of the following description and accompanying
drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a generalized block diagram illustrating one
embodiment of network architecture.

FIG. 2 is a generalized block diagram of one embodiment
of'a mapping table.

FIG. 3A is a generalized block diagram of one embodiment
of a primary index used to access a mapping table.

FIG. 3B is a generalized block diagram of another embodi-
ment of a primary index used to access a mapping table.

FIG. 4 is a generalized block diagram of another embodi-
ment of a primary index and mapping table.

FIG. 5A is a generalized flow diagram illustrating one
embodiment of a method for performing a read access.

FIG. 5B is a generalized flow diagram illustrating one
embodiment of a method for performing a write operation.

FIG. 5C is a generalized flow diagram illustrating one
embodiment of a method for encoding and storing tuples.

FIG. 5D illustrates one embodiment of tuple encoding.

FIG. 5E is a generalized flow diagram illustrating one
embodiment of a method for selecting and encoding scheme.

FIG. 6 is a generalized block diagram of one embodiment
of a multi-node network with shared mapping tables.

FIG. 7 is a generalized block diagram of one embodiment
of a secondary index used to access a mapping table.

FIG. 8 is a generalized block diagram of one embodiment
of a tertiary index accessing a mapping table.

FIG. 9 illustrates one embodiment of a method that utilizes
overlay tables.

FIG. 10 is a generalized block diagram of one embodiment
of a flattening operation for levels within a mapping table.

FIG. 11 is a generalized block diagram of another embodi-
ment of a flattening operation for levels within a mapping
table.

FIG. 12 is a generalized flow diagram illustrating one
embodiment of a method for flattening levels within a map-
ping table.

FIG. 13 is a generalized flow diagram illustrating one
embodiment of a method for efficiently processing bulk array
tasks within a mapping table.

FIG. 14 is a generalized block diagram illustrating an
embodiment of a data layout architecture within a storage
device.
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FIG. 15 illustrates one embodiment of a method for per-
forming deduplication.

FIG. 16 illustrates one embodiment of a method for main-
taining fingerprints in a deduplication table.

FIG. 17 is a generalized block diagram illustrating one
embodiment of a table entry storing attributes.

FIG. 18 is a generalized block diagram illustrating one
embodiment of a system for maintaining attributes tables for
data components.

FIG. 19 is a generalized block diagram illustrating one
embodiment of a deduplication table.

FIG. 20 illustrates one embodiment of a method for sup-
porting multiple fingerprint tables.

FIG. 21 illustrates one embodiment of a method for evic-
tion from a deduplication table.

FIG. 22 illustrates one embodiment of a method for insert-
ing an entry into a deduplication table.

FIG. 23 illustrates one embodiment of a system for main-
taining reverse address mappings using a link table.

FIG. 24 illustrates embodiment of a portion of a garbage
collection process.

FIG. 25 illustrates embodiment of a portion of a garbage
collection process.

FIG. 26 illustrates embodiment of a portion of a garbage
collection process.

While the invention is susceptible to various modifications
and alternative forms, specific embodiments are shown by
way of example in the drawings and are herein described in
detail. It should be understood, however, that drawings and
detailed description thereto are not intended to limit the
invention to the particular form disclosed, but on the contrary,
the invention is to cover all modifications, equivalents and
alternatives falling within the spirit and scope of the present
invention as defined by the appended claims.

DETAILED DESCRIPTION

In the following description, numerous specific details are
set forth to provide a thorough understanding of the present
invention. However, one having ordinary skill in the art
should recognize that the invention might be practiced with-
out these specific details. In some instances, well-known
circuits, structures, signals, computer program instruction,
and techniques have not been shown in detail to avoid obscur-
ing the present invention.

Referring to FIG. 1, a generalized block diagram of one
embodiment of a network architecture 100 is shown. As
described further below, one embodiment of network archi-
tecture 100 includes client computer systems 110a-1105
interconnected to one another through a network 180 and to
data storage arrays 120a-1205. Network 180 may be coupled
to a second network 190 through a switch 140. Client com-
puter system 110c¢ is coupled to client computer systems
110a-1105 and data storage arrays 120a-1205 via network
190. In addition, network 190 may be coupled to the Internet
160 or otherwise outside network through switch 150.

It is noted that in alternative embodiments, the number and
type of client computers and servers, switches, networks, data
storage arrays, and data storage devices is not limited to those
shown in FIG. 1. At various times one or more clients may
operate offline. In addition, during operation, individual cli-
ent computer connection types may change as users connect,
disconnect, and reconnect to network architecture 100. Fur-
ther, while the present description generally discusses net-
work attached storage, the systems and methods described
herein may also be applied to directly attached storage sys-
tems and may include a host operating system configured to
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perform one or more aspects of the described methods.
Numerous such alternatives are possible and are contem-
plated. A further description of each of the components
shown in FIG. 1 is provided shortly. First, an overview of
some of the features provided by the data storage arrays
1204-1205 is described.

In the network architecture 100, each of the data storage
arrays 120a-1205 may be used for the sharing of data among
different servers and computers, such as client computer sys-
tems 110a-110c. In addition, the data storage arrays 120a-
1205 may be used for disk mirroring, backup and restore,
archival and retrieval of archived data, and data migration
from one storage device to another. In an alternate embodi-
ment, one or more client computer systems 110a-110¢ may
be linked to one another through fast local area networks
(LANSs) in order to form a cluster. Such clients may share a
storage resource, such as a cluster shared volume residing
within one of data storage arrays 120a-1206.

Each of the data storage arrays 120a-1205 includes a stor-
age subsystem 170 for data storage. Storage subsystem 170
may comprise a plurality of storage devices 176a-176m.
These storage devices 176a-176m may provide data storage
services to client computer systems 110a-110¢. Each of the
storage devices 176a-176m uses a particular technology and
mechanism for performing data storage. The type of technol-
ogy and mechanism used within each of the storage devices
176a-176m may at least in part be used to determine the
algorithms used for controlling and scheduling read and write
operations to and from each of the storage devices 176a-
176m. For example, the algorithms may locate particular
physical locations corresponding to the operations. In addi-
tion, the algorithms may perform input/output (I/O) redirec-
tion for the operations, removal of duplicate data in the stor-
age subsystem 170, and support one or more mapping tables
used for address redirection and deduplication.

The logic used in the above algorithms may be included in
one or more of a base operating system (OS) 132, a volume
manager 134, within a storage subsystem controller 174,
control logic within each of the storage devices 176a-176m,
or otherwise. Additionally, the logic, algorithms, and control
mechanisms described herein may comprise hardware and/or
software.

Each of the storage devices 176a-176m may be configured
to receive read and write requests and comprise a plurality of
data storage locations, each data storage location being
addressable as rows and columns in an array. In one embodi-
ment, the data storage locations within the storage devices
176a-176m may be arranged into logical, redundant storage
containers or RAID arrays (redundant arrays of inexpensive/
independent disks).

In some embodiments, each of the storage devices 176a-
176m may utilize technology for data storage that is difterent
from a conventional hard disk drive (HDD). For example, one
or more of the storage devices 176a-176m may include or be
further coupled to storage consisting of solid-state memory to
store persistent data. In other embodiments, one or more of
the storage devices 176a-176m may include or be further
coupled to storage using other technologies such as spin
torque transfer technique, magnetoresistive random access
memory (MRAM) technique, shingled disks, memristors,
phase change memory, or other storage technologies. These
different storage techniques and technologies may lead to
differing 1/O characteristics between storage devices.

In one embodiment, the included solid-state memory com-
prises solid-state drive (SSD) technology. The differences in
technology and mechanisms between HDD technology and
SDD technology may lead to differences in input/output (I/O)
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characteristics of the data storage devices 176a-176m. A
Solid-State Disk (SSD) may also be referred to as a Solid-
State Drive. Without moving parts or mechanical delays, an
SSD may have a lower read access time and latency than a
HDD. However, the write performance of SSDs is generally
slower than the read performance and may be significantly
impacted by the availability of free, programmable blocks
within the SSD.

Storage array efficiency may be improved by creating a
storage virtualization layer between user storage and physical
locations within storage devices 176a-176m. In one embodi-
ment, a virtual layer of a volume manager is placed in a
device-driver stack of an operating system (OS), rather than
within storage devices or in a network. Many storage arrays
perform storage virtualization at a coarse-grained level to
allow storing of virtual-to-physical mapping tables entirely in
memory. However, such storage arrays are unable to integrate
features such as data compression, deduplication and copy-
on-modify operations. Many file systems support fine-
grained virtual-to-physical mapping tables, but they do not
support large storage arrays, such as device groups 173a-
173m. Rather, a volume manager or a disk array manager is
used to support device groups 173a-173m.

In one embodiment, one or more mapping tables may be
stored in the storage devices 176a-176m, rather than memory,
such as RAM 172, memory medium 130 or a cache within
processor 122. The storage devices 176a-176 may be SSDs
utilizing Flash memory. The low read access and latency
times for SSDs may allow a small number of dependent read
operations to occur while servicing a storage access request
from a client computer. The dependent read operations may
be used to access one or more indexes, one or more mapping
tables, and user data during the servicing of the storage access
request.

In one example, I/O redirection may be performed by the
dependent read operations. In another example, inline dedu-
plication may be performed by the dependent read operations.
In yet another example, bulk array tasks, such as a large copy,
move, or zeroing operation, may be performed entirely within
a mapping table rather than accessing storage locations hold-
ing user data. Such a direct map manipulation may greatly
reduce I/O traffic and data movement within the storage
devices 176a-176m. The combined time for both servicing
the storage access request and performing the dependent read
operations from SSDs may be less than servicing a storage
access request from a spinning HDD.

In addition, the information within a mapping table may be
compressed. A particular compression algorithm may be cho-
sen to allow identification of individual components, such as
a key within a record among multiple records. Therefore, a
search for a given key among multiple compressed records
may occur. In various embodiments the search for a given key
may be performed without decompressing each tuple by com-
paring the compressed representation of the key against the
compressed information stored in the relevant fields of the
tuple. If a match is found, only the matching record may be
decompressed. Compressing the tuples within records of a
mapping table may further enable fine-grained level map-
ping. This fine-grained level mapping may allow direct map
manipulation as an alternative to common bulk array tasks.
Further details concerning efficient storage virtualization will
be discussed below.

Again, as shown, network architecture 100 includes client
computer systems 110a-110¢ interconnected through net-
works 180 and 190 to one another and to data storage arrays
120a-1205. Networks 180 and 190 may include a variety of
techniques including wireless connection, direct local area
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network (LAN) connections, wide area network (WAN) con-
nections such as the Internet, a router, storage area network,
Ethernet, and others. Networks 180 and 190 may comprise
one or more [LANs that may also be wireless. Networks 180
and 190 may further include remote direct memory access
(RDMA) hardware and/or software, transmission control
protocol/internet protocol (TCP/IP) hardware and/or soft-
ware, router, repeaters, switches, grids, and/or others. Proto-
cols such as Fibre Channel, Fibre Channel over Ethernet
(FCoE), iSCSI, and so forth may be used in networks 180 and
190. Switch 140 may utilize a protocol associated with both
networks 180 and 190. The network 190 may interface with a
set of communications protocols used for the Internet 160
such as the Transmission Control Protocol (TCP) and the
Internet Protocol (IP), or TCP/IP. Switch 150 may be a TCP/
1P switch.

Client computer systems 110a-110c¢ are representative of
any number of stationary or mobile computers such as desk-
top personal computers (PCs), servers, server farms, work-
stations, laptops, handheld computers, servers, personal digi-
tal assistants (PDAs), smart phones, and so forth. Generally
speaking, client computer systems 110a-110¢ include one or
more processors comprising one or more processor cores.
Each processor core includes circuitry for executing instruc-
tions according to a predefined general-purpose instruction
set. For example, the x86 instruction set architecture may be
selected. Alternatively, the Alpha®, PowerPC®, SPARC®,
or any other general-purpose instruction set architecture may
be selected. The processor cores may access cache memory
subsystems for data and computer program instructions. The
cache subsystems may be coupled to a memory hierarchy
comprising random access memory (RAM) and a storage
device.

Each processor core and memory hierarchy within a client
computer system may be connected to a network interface. In
addition to hardware components, each of the client computer
systems 110a-110¢ may include a base operating system
(OS) stored within the memory hierarchy. The base OS may
be representative of any of a variety of operating systems,
such as, for example, MS-DOS®, MS-WINDOWS®,
OS/2®, UNIX®, Linux®, Solaris®, AIX®, DART, or other-
wise. As such, the base OS may be operable to provide various
services to the end-user and provide a software framework
operable to support the execution of various programs. Addi-
tionally, each of the client computer systems 110a-110¢ may
include a hypervisor used to support virtual machines (VMs).
As is well known to those skilled in the art, virtualization may
be used in desktops and servers to fully or partially decouple
software, such as an OS, from a system’s hardware. Virtual-
ization may provide an end-user with an illusion of multiple
OSes running on a same machine each having its own
resources and access to logical storage entities (e.g., LUNs)
built upon the storage devices 176a-176m within each of the
data storage arrays 120a-1206.

Each of the data storage arrays 120a-1205 may be used for
the sharing of data among different servers, such as the client
computer systems 110a-110c. Each of the data storage arrays
120a-1204 includes a storage subsystem 170 for data storage.
Storage subsystem 170 may comprise a plurality of storage
devices 176a-176m. Each of these storage devices 176a-
176m may be an SSD. A controller 174 may comprise logic
for handling received read/write requests. A random-access
memory (RAM) 172 may be used to batch operations, such as
received write requests. In various embodiments, when
batching write operations (or other operations) non-volatile
storage (e.g., NVRAM) may be used.
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The base OS 132, the volume manager 134 (or disk array
manager 134), any OS drivers (not shown) and other software
stored in memory medium 130 may provide functionality
providing access to files and the management of these func-
tionalities. The base OS 132 may be a storage operating
system such as NetApp Data ONTAP® or otherwise. The
base OS 132 and the OS drivers may comprise program
instructions stored on the memory medium 130 and execut-
able by processor 122 to perform one or more memory access
operations in storage subsystem 170 that correspond to
received requests. The system shown in FIG. 1 may generally
include one or more file servers and/or block servers.

Each of the data storage arrays 120a-1205 may use a net-
work interface 124 to connect to network 180. Similar to
client computer systems 110a-110c, in one embodiment, the
functionality of network interface 124 may be included on a
network adapter card. The functionality of network interface
124 may be implemented using both hardware and software.
Both a random-access memory (RAM) and a read-only
memory (ROM) may be included on a network card imple-
mentation of network interface 124. One or more application
specific integrated circuits (ASICs) may be used to provide
the functionality of network interface 124.

In addition to the above, each of the storage controllers 174
within the data storage arrays 120a-1205 may support storage
array functions such as snapshots, replication and high avail-
ability. In addition, each of the storage controllers 174 may
support a virtual machine environment that comprises a plu-
rality of volumes with each volume including a plurality of
snapshots. In one example, a storage controller 174 may
support hundreds of thousands of volumes, wherein each
volume includes thousands of snapshots. In one embodiment,
a volume may be mapped in fixed-size sectors, such as a
4-kilobyte (KB) page within storage devices 176a-176m. In
another embodiment, a volume may be mapped in variable-
size sectors such as for write requests. A volume ID, a snap-
shot ID, and a sector number may be used to identify a given
volume.

An address translation table may comprise a plurality of
entries, wherein each entry holds a virtual-to-physical map-
ping for a corresponding data component. This mapping table
may be used to map logical read/write requests from each of
the client computer systems 110a-110c to physical locations
in storage devices 176a-176m. A “physical” pointer value
may be read from the mapping table during a lookup opera-
tion corresponding to a received read/write request. This
physical pointer value may then be used to locate a physical
location within the storage devices 176a-176m. It is noted the
physical pointer value may be used to access another mapping
table within a given storage device of the storage devices
176a-176m. Consequently, one or more levels of indirection
may exist between the physical pointer value and a target
storage location.

In another embodiment, the mapping table may comprise
information used to deduplicate data (deduplication table
related information). The information stored in the dedupli-
cation table may include mappings between one or more
calculated hash values for a given data component and a
physical pointer to a physical location in one of the storage
devices 176a-176m holding the given data component. In
addition, a length of the given data component and status
information for a corresponding entry may be stored in the
deduplication table.

Turning now to FIG. 2, a generalized block diagram of one
embodiment of a mapping table is shown. As discussed ear-
lier, one or more mapping tables may be used for /O redirec-
tion or translation, deduplication of duplicate copies of user
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data, volume snapshot mappings, and so forth. Mapping
tables may be stored in the storage devices 176a-176m. The
diagram shown in FIG. 2 represents a logical representation
of one embodiment of the organization and storage of the
mapping table. Each level shown may include mapping table
entries corresponding to a different period of time. For
example, level “1” may include information older than infor-
mation stored in level “2”. Similarly, level “2” may include
information older than information stored in level “3”. The
information stored in the records, pages and levels shown in
FIG. 2 may be stored in a random-access manner within the
storage devices 176a-176m. Additionally, copies of portions
or all of'a given mapping table entries may be stored in RAM
172, in buffers within controller 174, in memory medium 130,
and in one or more caches within or coupled to processor 122.
In various embodiments, a corresponding index may be
included in each level for mappings which are part of the level
(as depicted later in FIG. 4). Such an index may include an
identification of mapping table entries and where they are
stored (e.g., an identification of the page) within the level. In
other embodiments, the index associated with mapping table
entries may be a distinct entity, or entities, which are not
logically part of the levels themselves.

Generally speaking, each mapping table comprises a set of
rows and columns. A single record may be stored in a map-
ping table as a row. A record may also be referred to as an
entry. In one embodiment, a record stores at least one tuple
including a key. Tuples may (or may not) also include data
fields including data such as a pointer used to identify or
locate data components stored in storage subsystem 170. It is
noted that in various embodiments, the storage subsystem
may include storage devices (e.g., SSDs) which have internal
mapping mechanisms. In such embodiments, the pointer in
the tuple may not be an actual physical address per se. Rather,
the pointer may be a logical address which the storage device
maps to a physical location within the device. Over time, this
internal mapping between logical address and physical loca-
tion may change. In other embodiments, records in the map-
ping table may only contain key fields with no additional
associated data fields. Attributes associated with a data com-
ponent corresponding to a given record may be stored in
columns, or fields, in the table. Status information, such as a
valid indicator, a data age, a data size, and so forth, may be
stored in fields, such as Field0 to FieldN shown in FIG. 2. In
various embodiments, each column stores information corre-
sponding to a given type. In some embodiments, compression
techniques may be utilized for selected fields which in some
cases may result in fields whose compressed representation is
zero bits in length. Itis noted that while the following discus-
sion generally describes the mapping tables as mapping
address (e.g., virtual to physical addresses), in other embodi-
ments the tables, methods, and mechanisms may be applied to
such that the key can be a file identifier or an object identifier.
For example, in such embodiments the system may be used as
a file server or object server. In various embodiments, the
methods and mechanisms described here may be used to
serve blocks, objects, and files, and dynamically move space
between them. Numerous such embodiments are possible and
are contemplated.

A key is an entity in a mapping table that may distinguish
one row of data from another row. Each row may also be
referred to as an entry or a record. A key may be a single
column, or it may consist of a group of columns used to
identify a record. In some embodiments, a key may corre-
spond to a range of values rather than to a single value. For
example, a key corresponding to a range may be represented
as astart and end of a range, or as a start and length, or in other

25

30

40

45

10

ways. Additionally, the ranges corresponding to keys may
overlap with other keys, including either ranges or individual
values. In one example, an address translation mapping table
may utilize a key comprising a volume identifier (ID), an
address such as a logical address or virtual address, a snapshot
1D, a sector number, and so forth. A given received read/write
storage access request may identify a particular volume, sec-
tor and length. A sector may be a logical block of data stored
in a volume. Sectors may have different sizes on different
volumes. The address translation mapping table may map a
volume in sector-size units.

A volume identifier (ID) may be used to access a volume
table that conveys a volume ID and a corresponding current
snapshot ID. This information along with the received sector
number may be used to access the address translation map-
ping table. Therefore, in such an embodiment, the key value
for accessing the address translation mapping table is the
combination of the volume ID, snapshot ID, and the received
sector number. In one embodiment, the records within the
address translation mapping table are sorted by volume ID,
followed by the sector number and then by the snapshot ID.
This ordering may group together different versions of data
components in different snapshots. Therefore, during a
lookup for a storage access read request, a corresponding data
component may be found with fewer read operations to the
storage devices 176a-176m.

The address translation mapping table may convey a physi-
cal pointer value that indicates a location within the data
storage subsystem 170 storing a data component correspond-
ing to the received data storage access request. The key value
may be compared to one or more key values stored in the
mapping table. In the illustrated example, simpler key values,
such as “07, “2”, “12” and so forth, are shown for ease of
illustration. The physical pointer value may be stored in one
or more of the fields in a corresponding record.

The physical pointer value may include a segment identi-
fier (ID) and a physical address identifying the location of
storage. A segment may be a basic unit of allocation in each of
the storage devices 176a-176m. A segment may have aredun-
dant array of independent device (RAID) level and a data
type. During allocation, a segment may have one or more of
the storage devices 176a-176m selected for corresponding
storage. In one embodiment, a segment may be allocated an
equal amount of storage space on each of the one or more
selected storage devices of the storage devices 176a-176m.
The data storage access request may correspond to multiple
sectors, which may result in multiple parallel lookups. A
write request may be placed in an NVRAM buffer, such as
RAM 172, and a write completion acknowledgment may be
sent to a corresponding client computer of the client comput-
ers 110a-110c. At a later time, an asynchronous process may
flush the buffered write requests to the storage devices 176a-
176m.

In another example, the mapping table shown in FIG. 2
may be a deduplication table. A deduplication table may
utilize a key comprising a hash value determined from a data
component associated with a storage access request. The
initial steps of a deduplication operation may be performed
concurrently with other operations, such as a read/write
request, a garbage collection operation, a trim operation, and
so forth. For a given write request, the data sent from one of
the client computer systems 110a-110c may be a data stream,
such as a byte stream. As is well known to those skilled in the
art, a data stream may be divided into a sequence of fixed-
length or variable-length chunks. A chunking algorithm may
perform the dividing of the data stream into discrete data
components which may be referred to as “chunks”. A chunk
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may be a sub-file content-addressable unit of data. In various
embodiments, a table or other structure may be used to deter-
mine a particular chunking algorithm to use for a given file
type or type of data. A file’s type may be determined by
referring to its file name extension, separate identifying infor-
mation, the content of the data itself, or otherwise. The result-
ing chunks may then be stored in one of the data storage
arrays 120a-1205 to allow for sharing of the chunks. Such
chunks may be stored separately or grouped together in vari-
ous ways.

In various embodiments, the chunks may be represented by
a data structure that allows reconstruction of a larger data
component from its chunks (e.g. a particular file may be
reconstructed based on one or more smaller chunks of stored
data). A corresponding data structure may record its corre-
sponding chunks including an associated calculated hash
value, a pointer (physical and/or logical) to its location in one
of'the data storage arrays 120a-1205b, and its length. For each
data component, a deduplication application may be used to
calculate a corresponding hash value. For example, a hash
function, such as Message-Digest algorithm 5 (MDS5), Secure
Hash Algorithm (SHA), or otherwise, may be used to calcu-
late a corresponding hash value. In order to know if a given
data component corresponding to a received write request is
already stored in one of the data storage arrays 120a-1205,
bits of the calculated hash value (or a subset of bits of the hash
value) for the given data component may be compared to bits
in the hash values of data components stored in one or more of
the data storage arrays 120a-1206.

A mapping table may comprise one or more levels as
shown in FIG. 2. A mapping table may comprise 16 to 64
levels, although another number of levels supported within a
mapping table is possible and contemplated. In FIG. 2, three
levels labeled Level <17, Level “2” and Level “N” are shown
for ease of illustration. Each level within a mapping table may
include one or more partitions. In one embodiment, each
partition is a 4 kilo-byte (KB) page. For example, Level “N”
is shown to comprise pages 210a-210g, Level “2” comprises
pages 210£-210/ and Level “1” comprises pages 210k-210z.
It is possible and contemplated other partition sizes may also
be chosen for each of the levels within a mapping table. In
addition, it is possible one or more levels have a single parti-
tion, which is the level itself.

In one embodiment, multiple levels within a mapping table
are sorted by time. For example, in FIG. 2, Level “1” may be
older than Level “2”. Similarly, Level “2” may be older than
Level “N”. In one embodiment, when a condition for insert-
ing one or more new records in the mapping table is detected,
a new level may be created. In various embodiments, when a
new level is created the number/designation given to the new
level is greater than numbers given to levels that preceded the
new level in time. For example, if the most recent level cre-
ated is assigned the value 8, then a newly created level may be
assigned the value 9. In this manner a temporal relationship
between the levels may be established or determined. As may
be appreciated, numerical values need not be strictly sequen-
tial. Additionally, alternative embodiments may reverse the
numbering scheme such that newer levels have smaller
numerical designations. Further, other embodiments may uti-
lize non-numerical designations to distinguish between lev-
els. Numerous such embodiments are possible and are con-
templated. Each next older level has a label decremented by
one from a label integer value of a previous younger level. A
separate table not shown may be used to logically describe the
mapping table. For example, each entry of the separate table
may include a given level ID and a list of the page IDs stored
within the given level ID.
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By creating a new highest level for an insertion of new
records, the mapping table is updated by appending the new
records. In one embodiment, a single level is created as a new
highest level and each of the new records is inserted into the
single level. In another embodiment, the new records may be
searched for duplicate keys prior to insertion into the mapping
table. A single level may be created as a new highest level.
When a given record storing a duplicate key is found, each of
the records buffered ahead of the given record may be inserted
into the single level. The new records may be buffered in a
manner to preserve memory ordering, such as in-order
completion of requests. Then another single level may be
created and the remainder of the new records may be inserted
into this other single level unless another record storing a
duplicate key is found. If such a record is found, then the steps
are repeated. Existing records within the mapping table stor-
ing a same key value as one of the new records are not edited
or overwritten in-place by the insertion of the new records.

Although the sizes of the levels are illustrated as increasing
with lower levels being larger than newer levels, the higher
levels may alternate between being larger or smaller than
neighboring levels. The number of newer records to insert
into the mapping table may vary over time and create the
fluctuating level sizes. The lower levels may be larger than
newer levels due to flattening of the lower levels. Two or more
lower levels may be flattened into a single level when particu-
lar conditions are detected. Further details are provided later.

With no edits in-place for the records stored in the mapping
table, newer records placed in higher levels may override
records storing a same key value located in the lower levels.
For example, when the mapping table is accessed by a given
key value, one or more levels may be found to store a record
holding a key value matching the given key value. In such a
case, the highest level of the one or more levels may be chosen
to provide the information stored in its corresponding record
as a result of the access. Further details are provided later. In
addition, further details about the detected conditions for
inserting one or more new records into the mapping table and
the storage of information are provided later.

In one embodiment, entries within a given page may be
sorted by key. For example, the entries may be sorted in
ascending order according to a key included in the entry.
Additionally, in various embodiments, the pages within a
level may be sorted according to any desired sort order. In
various embodiments, the pages within a level may also be
sorted (e.g., according to key values or otherwise). In the
example of FIG. 2, page 210a of Level N includes records
sorted according to key value in ascending order. In various
embodiments, one or more columns may be used to store key
values. In the example of FIG. 2, two columns or fields are
shown in each tuple for storing key values. Utilizing such key
values, the records then may be sorted in a desired order.
Sorting may be performed based on any of the key values for
arecords, or any combination of key values for the record. In
the example shown, the first record stores a key value includ-
ing 0 and 8 stored in two columns, and the last record stores
a key value including 12 and 33. In this illustrated example,
each sorted record in page 210a between the first and the last
record stores a key value between 0 and 12 in the first column
and the records are arranged in a manner to store key values
based (at least in part) on the first column in an ascending
order from O to 12. Similarly, page 2105 includes sorted
records, wherein the first record stores key values of 12 and 39
and the last record stores key values of 31 and 19. In this
illustrated example, each sorted record in page 21056 between
the first and the last record stores a key value between 12 and
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31 inthe first column and the records are arranged in a manner
to store key values in an ascending order from 12 to 31.

In addition to the above, the pages within Level N are
sorted according to a desired order. In various embodiments,
pages within a level may be sorted in a manner that reflects the
order in which entries within a page are sorted. For example,
pages within a level may be sorted according to key values in
ascending order. As the first key value in page 2105 is greater
than the last key value in page 210a, page 2105 follows page
210a in the sort order. Page 210g would then include entries
whose key values are greater than those included in pages
210a-210f (not shown). In this manner, all entries within a
level are sorted according to a common scheme. The entries
are simply subdivided into page, or other, size units. As may
be appreciated, other sorting schemes may be used as desired.

Referring now to FIG. 3 A, a generalized block diagram of
one embodiment of a primary index used to access a mapping
table is shown. A key generator 304 may receive one or more
requester data inputs 302. In one embodiment, a mapping
table is an address translation directory table. A given
received read/write request may identity a particular volume,
sector and length. The key generator 304 may produce a query
key value 306 that includes a volume identifier (ID), a logical
or virtual address, a snapshot ID, and a sector number. Other
combinations are possible and other or additional values may
be utilized as well. Different portions of the query key value
306 may be compared to values stored in columns that may or
may not be contiguous within the mapping table. In the shown
example, a key value of “22” is used for ease of illustration.

As described earlier, both a chunking algorithm and/or a
segmenting algorithm associated with the key generator 304
may receive data 302 corresponding to a storage access
request. These algorithms may produce one or more data
components and select a hash function to calculate a corre-
sponding hash value, or query key value 306, for each data
component. The resulting hash value may beused to index the
deduplication table.

A primary index 310, as shown in FIG. 3A, may provide
location identifying information for data stored in the storage
devices 176a-176m. For example, referring again to FIG. 2, a
corresponding primary index 310 (or portion thereof) may be
logically included in each of level “1”, level “2” and level
“N”. Again, each level and each corresponding primary index
may be physically stored in a random-access manner within
the storage devices 176a-176m.

In one embodiment, the primary index 310 may be divided
into partitions, such as partitions 312¢-3125b. In one embodi-
ment, the size of the partitions may range from a 4 kilobyte
(KB) page to 256 KB, though other sizes are possible and are
contemplated. Each entry of the primary index 310 may store
akey value. In addition, each entry may store a corresponding
unique virtual page identifier (ID) and a level ID correspond-
ing to the key value. Each entry may store corresponding
status information such as validity information. When the
primary index 310 is accessed with a query key value, the
entries within the index 310 may be searched for one or more
entries which match, or otherwise correspond to, the key
value. Information from the matching entry may then be used
to locate and retrieve a mapping which identifies a storage
location which is the target of a received read or write request.
In other words, the index 310 identifies the locations of map-
pings. In one embodiment, a hit in the index provides a
corresponding page ID identifying a page within the storage
devices 176a-176m storing both the key value and a corre-
sponding physical pointer value. The page identified by the
corresponding page ID may be searched with the key value to
find the physical pointer value.
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In the example of FIG. 3A, a received request corresponds
to a key “22”. This key is then used to access index 310. A
search of the index 310 results on a hit to an entry within
partition 3125. The matching entry in this case include infor-
mation such as—page 28, and level 3. Based upon this result,
the desired mapping for the request is found in a page iden-
tified as page 28 within level 3 of the mapping tables. Using
this information, an access may then be made to the mapping
tables to retrieve the desired mapping. If an access to the
primary index 310 requires an access to storage, then at least
two storage accesses would be required in order to obtain a
desired mapping. Therefore, in various embodiments as
described below, portions of the primary index are cached, or
otherwise stored in a relatively fast access memory, in orderto
eliminate one access to the storage devices. In various
embodiments, the entire primary index for the mapping tables
is cached. In some embodiments, where the primary index has
become too large to cache in its entirety, or is otherwise larger
than desired, secondary, tertiary, or other index portions may
be used in the cache to reduce its size. Secondary type indices
are discussed below. In addition to the above, in various
embodiments mapping pages corresponding to recent hits are
also cached for at least some period of time. In this manner,
processes which exhibit accesses with temporal locality can
be serviced more rapidly (i.e., recently accessed locations
will have their mappings cached and readily available).

Referring now to FIG. 3B, a generalized block diagram of
one embodiment of a cached primary index used to access a
mapping table is shown. Circuit and logic portions corre-
sponding to those of FIG. 3A are numbered identically. The
cached primary index 314 may include copies of information
stored in each of the primary indexes 310 for the multiple
levels in a mapping table. The primary index 314 may be
stored in one or more of RAM 172, buffers within controller
174, memory medium 130 and caches within processor 122.
In one embodiment, the primary index 314 may be sorted by
key value, though sorting otherwise is possible. The primary
index 314 may also be divided into partitions, such as parti-
tions 316a-3165. In one embodiment, the size of the parti-
tions 316a-3165 may be a same size as the partitions 312a-
3125 within the primary index 310.

Similar to the primary index 310, each entry of the primary
index 314 may store one or more of a key value, a correspond-
ing unique virtual page identifier (ID), a level ID correspond-
ing to the key value, and status information such as valid
information. When the primary index 314 is accessed with a
query key value 306, it may convey a corresponding page ID
identifying a page within the storage devices 176a-176m
storing both the key value and a corresponding pointer value.
The page identified by the corresponding page ID may be
searched with the key value to find the pointer value. As
shown, the primary index 314 may have multiple records
storing a same key value. Therefore, multiple hits may result
from the search for a given key value. In one embodiment, a
hit with a highest value of a level ID (or whatever indicator is
used to identify a youngest level or most recent entry) may be
chosen. This selection of one hit from multiple hits may be
performed by merge logic not shown here. A further descrip-
tion of the merge logic is provided later.

Turning now to FIG. 4, a generalized block diagram of
another embodiment of a mapping table and primary index
used to access the mapping table is shown. Circuit and logic
portions corresponding to those of FIG. 3A are numbered
identically. Mapping table 340 may have a similar structure as
the mapping table shown in FIG. 2. However, storage of a
corresponding primary index 310 for each level is now
shown. A copy of one or more of the primary index portions
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310a-310i may be included in index copies 330 (e.g., cached
copies). Copies 330 may generally correspond to the cached
index depicted in FIG. 3B. The information in index copies
330 may be stored in RAM 172, buffers within controller 174,
memory medium 130, and caches within processor 122. In
the embodiment shown, the information in primary indexes
310a-310; may be stored with the pages of mappings in
storage devices 176a-176m. Also shown is a secondary index
320 which may be used to access a primary index, such as
primary index 310/ shown in the diagram. Similarly, access-
ing and updating the mapping table 340 may occur as
described earlier.

Mapping table 340 comprises multiple levels, such as
Level “17to Level “N”. In the illustrated example, each of the
levels includes multiple pages. Level “N” is shown to include
pages “0” to “D”, Level N-1 includes pages “E” to “G”, and
so forth. Again, the levels within the mapping table 310 may
be sorted by time. Level “N” may be younger than Level
“N-1"and so forth. Mapping table 340 may be accessed by at
least a key value. In the illustrated example, mapping table
340 is accessed by a key value “27”” and a page ID “32”. For
example, in one embodiment, a level ID “8” may be used to
identify a particular level (or “subtable”) of the mapping table
340to search. Having identified the desired subtable, the page
1D may then be used to identify the desired page within the
subtable. Finally, the key may be used to identify the desired
entry within the desired page.

As discussed above, an access to the cached index 330 may
result in multiple hits. In one embodiment, the results of these
multiple hits are provided to merge logic 350 which identifies
which hit is used to access the mapping table 340. Merge logic
350 may represent hardware and/or software which is
included within a storage controller. In one embodiment,
merge logic 350 is configured to identify a hit which corre-
sponds to a most recent (newest) mapping. Such an identifi-
cation could be based upon an identification of a correspond-
ing level for an entry, or otherwise. In the example shown, a
query corresponding to level 8, page 32, key 27 is received.
Responsive to the query, page 32 of level 8 is accessed. If the
key 27 is found within page 32 (a hit), then a corresponding
result is returned (e.g., pointer xF3209B24 in the example
shown). If the key 27 is not found within page 32, then a miss
indication is returned. This physical pointer value may be
output from the mapping table 340 to service a storage access
request corresponding to the key value “27”.

In one embodiment, the mapping table 340 supports inline
mappings. For example, a mapping detected to have a suffi-
ciently small target may be represented without an actual
physical sector storing user data within the storage devices
176a-176m. One example may be a repeating pattern within
the user data. Rather than actually store multiple copies of a
repeated pattern (e.g., a series of zeroes) as user data within
the storage devices 176a-176m, a corresponding mapping
may have an indication marked in the status information, such
as within one of the fields of field0 to fieldN in the mapping
table, that indicates what data value is to be returned for a read
request. However, there is no actual storage of this user data at
atarget location within the storage devices 176a-176m. Addi-
tionally, an indication may be stored within the status infor-
mation of the primary index 310 and any additional indexes
that may be used (not shown here).

In addition to the above, in various embodiments the stor-
age system may simultaneously support multiple versions of
the data organization, storage schemes, and so on. For
example, as the system hardware and software evolve, new
features may be incorporated or otherwise provided. Data,
indexes, and mappings (for example) which are newer may
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take advantage of these new features. In the example of FIG.
4, new level N may correspond to one version of the system,
while older level N-1 may correspond to a prior version. In
order to accommodate these different versions, metadata may
be stored in association with each of the levels which indi-
cates which version, which features, compression schemes,
and so on, are used by that level. This metadata could be
stored as part of the index, the pages themselves, or both.
When accesses are made, this metadata then indicates how
the data is to be handled properly. Additionally, new schemes
and features can be applied dynamically without the need to
quiesce the system. In this manner, upgrading of the system is
more flexible and a rebuild of older data to reflect newer
schemes and approaches is not necessary.

Turning now to FIG. 5A, one embodiment of a method for
servicing a read access is shown. The components embodied
in the network architecture 100 and mapping table 340
described above may generally operate in accordance with
method 500. For purposes of discussion, the steps in this
embodiment are shown in sequential order. However, some
steps may occur in a different order than shown, some steps
may be performed concurrently, some steps may be combined
with other steps, and some steps may be absent in another
embodiment.

Read and store (write) requests may be conveyed from one
of the clients 110a-110c¢ to one of the data storage arrays
120a-1205. In the example shown, a read request 500 is
received, and in block 502 a corresponding query key value
may be generated. In some embodiments, the request itself
may include the key which is used to access the index and a
“generation” of the key 502 is not required. As described
earlier, the query key value may be a virtual address index
comprising a volume ID, a logical address or virtual address
associated with a received request, a snapshot ID, a sector
number, and so forth. In embodiments which are used for
deduplication, the query key value may be generated using a
hash function or other function. Other values are possible and
contemplated for the query key value, which is used to access
a mapping table.

Inblock 504, the query key value may be used to access one
or more cached indexes to identify one or more portions of a
mapping table that may store a mapping that corresponds to
the key value. Additionally, recently used mappings which
have been cached may be searched as well. If a hit on the
cached mappings is detected (block 505), the cached mapping
may be used to perform the requested access (block 512). If
there is no hit on the cached mappings, the a determination
may be made as to whether or not there is a hit on the cached
index (block 506). If so, a result corresponding to the hit is
used to identify and access the mapping table (block 508). For
example, with the primary index 310, an entry storing the
query key value also may store a unique virtual page ID that
identifies a single particular page within the mapping table.
This single particular page may store both the query key value
and an associated physical pointer value. In block 508, the
identified potion of the mapping table may be accessed and a
search performed using the query key value. The mapping
table result may then be returned (block 510) and used to
perform a storage access (block 512) that corresponds to the
target location of the original read request.

In some embodiments, an index query responsive to a read
request may result in a miss. Such a miss could be due to only
aportion of the index being cached or an error condition (e.g.,
a read access to a non-existent location, address corruption,
etc.). In such a case, an access to the stored index may be
performed. If the access to the stored index results in a hit
(block 520), then a result may be returned (block 522) which
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is used to access the mapping tables (block 508). On the other
hand, if the access to the stored index results in a miss, then an
error condition may be detected. Handling of the error con-
dition may be done in any of a variety of desired ways. In one
embodiment, an exception may be generated (block 524)
which is then handled as desired. In one embodiment, a por-
tion of the mapping table is returned in block 510. In various
embodiments, this portion is a page which may be a 4 KB
page, or otherwise. As previously discussed, the records
within a page may be sorted to facilitate faster searches of the
content included therein.

In one embodiment, the mapping table utilizes traditional
database systems methods for information storage in each
page. For example, each record (or row or entry) within the
mapping table is stored one right after the other. This
approach may be used in row-oriented or row-store databases
and additionally with correlation databases. These types of
databases utilize a value-based storage structure. A value-
based storage (VBS) architecture stores a unique data value
only once and an auto-generated indexing system maintains
the context for all values. In various embodiments, data may
be stored by row and compression may be used on the col-
umns (fields) within a row. In some embodiments, the tech-
niques used may include storing a base value and having a
smaller field size for the offset and/or having a set of base
values, with a column in a row consisting of a base selector
and an offset from that base. In both cases, the compression
information may be stored within (e.g., at the start) of the
partition.

In some embodiments, the mapping table utilizes a col-
umn-oriented database system (column-store) method for
information storage in each page. Column-stores store each
database table column separately. In addition, attribute values
belonging to a same column may be stored contiguously,
compressed, and densely packed. Accordingly, reading a sub-
set of a table’s columns, such as within a page, may be
performed relatively quickly. Column data may be of uniform
type and may allow storage size optimizations to be used that
may not be available in row-oriented data. Some compression
schemes, such as Lempel-Ziv-Welch (I.Z) and run-length
encoding (RLE), take advantage of a detected similarity of
adjacent data to compress. Further, as described more fully
below, other compression schemes may encode a value as a
difference from a base value, thus requiring fewer bits to
represent the difference than would be required to represent
the full value. A compression algorithm may be chosen that
allows individual records within the page to be identified and
indexed. Compressing the records within the mapping table
may enable fine-grained mapping. In various embodiments,
the type of compression used for a particular portion of data
may be stored in association with the data. For example, the
type of compression could be stored in an index, as part of a
same page as the compressed data (e.g., in a header of some
type), or otherwise. In this manner, multiple compression
techniques and algorithms may be used side by side within the
storage system. In addition, in various embodiments the type
of compression used for storing page data may be determined
dynamically at the time the data is stored. In one embodiment,
one of a variety of compression techniques may be chosen
based at least in part on the nature and type of data being
compressed and/or the expected resource requirements for
the compression technique and the currently available
resources in the system. In some embodiments, multiple com-
pression techniques will be performed and the one exhibiting
the best compression will then be selected for use in com-
pressing the data. Numerous such approaches are possible
and are contemplated.
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Ifthere is a match of the query key value 306 found in any
of the levels of the mapping table (block 508), then in block
510, one or more indications of a hit may be conveyed to the
merge logic 350. For example, one or more hit indications
may be conveyed from levels “1” to “J” as shown in FIG. 4.
The merge logic 350 may choose the highest level, which may
also be the youngest level, of the levels “1” to “J” conveying
a hit indication. The chosen level may provide information
stored in a corresponding record as a result of the access.

In block 512, one or more corresponding fields within a
matching record of a chosen page may be read to process a
corresponding request. In one embodiment, when the data
within the page is stored in a compressed format, the page is
decompressed and a corresponding physical pointer value is
read out. In another embodiment, only the matching record is
decompressed and a corresponding physical pointer value is
read out. In one embodiment, a full physical pointer value
may be split between the mapping table and a corresponding
target physical location. Therefore, multiple physical loca-
tions storing user data may be accessed to complete a data
storage access request.

Turning now to FIG. 5B, one embodiment of a method
corresponding to a received write request is shown. Respon-
sive to a received write request (block 530), a new mapping
table entry corresponding to the request may be created
(block 532). In one embodiment, a new virtual-to-physical
address mapping may be added (block 534) to the mapping
table that pairs the virtual address of the write request with the
physical location storing the corresponding data component.
In various embodiments, the new mapping may be cached
with other new mappings and added to a new highest level of
the mapping table entries. The write operation to persistent
storage (block 536) may then be performed. In various
embodiments, writing the new mapping table entry to the
mapping tables in persistent storage may not be performed
until a later point in time (block 538) which is deemed more
efficient. As previously discussed, in a storage system using
solid state storage devices, writes to storage are much slower
than reads from storage. Accordingly, writes to storage are
scheduled in such a way that they minimize impact on overall
system performance. In some embodiments, the insertion of
new records into the mapping table may be combined with
other larger data updates. Combining the updates in this man-
ner may provide for more efficient write operations. It is noted
that in the method of 5B, as with each of the methods
described herein, operations are described as occurring in a
particular order for ease of discussion. However, the opera-
tions may in fact occur in a different order, and in some cases
various ones of the operations may occur simultaneously. All
such embodiments are contemplated.

Inaddition to the above, deduplication mechanisms may be
used in some embodiments. FIG. 5B depicts operations 550
which may generally correspond to deduplication systems
and methods. In the example shown, a hash corresponding to
a received write request may be generated (block 540) which
is used to access deduplication tables (block 542). If there is
ahit (block 544) in the deduplication tables (i.e., a copy of the
data already exists within the system), then a new entry may
be added to the deduplication tables (block 548) to reflect the
new write. In such a case, there is no need to write the data
itself to storage and the received write data may be discarded.
Alternatively, if there is a miss in the deduplication table, then
a new entry for the new data is created and stored in the
deduplication tables (block 546). Additionally, a write of the
data to storage is performed (block 536). Further, a new entry
may be created in the index to reflect the new data (block 538).
In some embodiments, if a miss occurs during an inline dedu-
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plication operation, no insertion in the deduplication tables is
performed at that time. Rather, during an inline deduplication
operation, a query with a hash value may occur for only a
portion of the entire deduplication table (e.g., a cached por-
tion of the deduplication table). If a miss occurs, a new entry
may be created and stored in the cache. Subsequently, during
a post-processing deduplication operation, such as an opera-
tion occurring during garbage collection, a query with a hash
value may occur for the entire deduplication table. A miss
may indicate the hash value is a unique hash value. Therefore,
a new entry such as a hash-to-physical-pointer mapping may
be inserted into the deduplication table. Alternatively, if a hit
is detected during post-processing deduplication (i.e., a
duplicate is detected), deduplication may be performed to
eliminate one or more of the detected copies.

As mentioned above, various compression schemes may
be used for encoding mapping table related data in order to
reduce the amount of storage required. Turning now to FIG.
5C, one embodiment of a method for compressing a set of
tuples is shown. This approach may be used to write entries to
a mapping table or other tables. First, a target size for a set of
encoded tuples to be stored (block 560) and default encoding
algorithm (block 561) may be selected. Subsequently, tuples
are selected for encoding and storage in the table based on the
selected size and algorithm (block 562). In such an embodi-
ment, the encoded size of each tuple is calculated using the
currently selected encoding method. If a tuple being added
would cause the currently accumulated tuples in the set to
exceed the target size (conditional block 564), the system may
try to find a better encoding algorithm for all of the tuples
accumulated to this point in order to reduce the total space
required for the encoded tuples (block 565). If a smaller
encoding is not found (block 565), then the most recent tuple
is omitted and the remaining tuples are written using the
current encoding method (block 567). If a smaller encoding is
found (block 565), then it is determined whether the new
smaller encoding is within the target size (block 566). If the
new encoding is not within the target size, then the most
recently provided tuple may be omitted and the remaining
tuples are encoded and written to the table using the current
encoding method (block 567). If a current tuple under con-
sideration does not cause the currently accumulated tuples in
the set to exceed the target size (conditional block 564), then
an attempt to add another tuple may be made (block 562).
Similarly, if a new encoding that meets the requirements is
found in conditional block 566, then an attempt to add another
tuple may be made (block 562).

FIG. 5D illustrates one embodiment of an approach for
encoding tuples. In the example, original unencoded tuples
584 are depicted, and the tuples as encoded 580 in an encoded
page 568 are depicted. Generally speaking, the illustrated
example represents each field in the table using one or two
values. The first value is a base value selector that is used to
select a base value, and the second value is an offset from the
selected base value. In one embodiment, the base selector
includes b bits and the offset includes k bits, where b and k are
integers. The values b and k may be chosen separately for
each field, and one or both of b and k may be zero. For each
encoded field, the values of b and k may be stored, along with
up to 2° bases, each of which can be as many bits as required
to represent the base value. If b is zero, only one base is stored.
Each field encoded in this way then requires at most b+k bits
to encode. The encoder can consider different values for band
k to minimize the total encoded size for the field, with larger
values of b typically requiring smaller values of k.

FIG. 5D shows a sample of unencoded tuples 584 and the
resulting encoded page 568. The page includes a header 570,
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the first two values of which contain the number of fields in
each tuple (572) and the number of tuples in the page (574).
The header 570 then has one table or set of values for each
field. The table first lists the number of bases for a given field
and then the number of bits k used to encode the offset from
the base. The page then stores each tuple, encoded using the
information in the header. For example, the first value (572) in
the header 570 indicates that there are 3 fields for each tuple.
The second value (574) indicates there are 84 tuples in the
page 568. The following three tables 576 A-576C then pro-
vide base value and encoding information for each of the
three fields. Table 576 A indicates that the first field has 1 base,
with 4 bits used to encode the offset. The sole base for the first
field is 12 (i.e., b is zero). The second table 576B indicates
there are 3 bases for the second field, and 3 bits are to be used
to encode the offset. The three bases for the second field 576B
are 5, 113, and 203. Finally, the third table 576C indicates the
third field has 2 bases, and 0 bits are used to encode the offset.

Looking at the encoded tuples 580, the various values may
be determined. In the example shown, a value in a given
row/column of the encoded tuples 580 corresponds to a value
in the same row/column of the original tuples. As may be
appreciated, the ordering and location of values in the figure
is exemplary only. The actual ordering of values and corre-
sponding encoded values may vary widely from what is
depicted. The first field in the first tuple 582 is encoded as 3
because the value 15 (the unencoded value) may be repre-
sented as an offset of 3 from the base of 12 (i.e., 15-12=3).
Note in this example there is only one base and b is zero.
Consequently, there are no bits used to encode the base selec-
tor value for this field. The offset value 3 is encoded using 4
bits, a substantial reduction over typical encodings that might
require 8, 32, or 64 bits. The second value in the first tuple
582A is encoded as 1,3. The 1 indicates that base 1 is selected
in the table 576B (i.e., select base 113), and the 3 indicates an
offset of 3 from the base of 113. The value 1 is encoded in 2
bits (27 is the smallest power of 2 greater than or equal to the
number of bases), and the value 3 is encoded in 3 bits, for a
total of 5 bits. Again, this is much smaller than a naive encod-
ing of the field. Finally, the last field is encoded as an index
indicating which base should be used. In this case no bits are
used to represent an offset. The first tuple has a 0 here because
the stored value is 4927, which s entry (base) 0 in the table for
the field 576C in the header 570. The total encoded space for
each tuple is thus (0+4)+(2+3)+(1+0)=10 bits, a large reduc-
tion over the unencoded space required.

In various embodiments, if the maximum size of a field is
increased, as may be done to accommodate larger virtual
addresses or LUN identifiers, there is no need to re-encode a
page. At worst, the header may need to be modified slightly to
accommodate larger base values, but this requires minimal
effort. In addition, it is possible to modify many values by a
fixed amount, as might be done when a range of blocks is
copied to a new location, by simply modifying the base with-
out the need to decompress and then re-encode each affected
tuple.

It is noted that there are several different methods to find
optimal, or otherwise desirable, values of b and k for a par-
ticular field. FIG. 5E shows one embodiment of a method for
evaluating and selecting an encoding scheme from multiple
possibilities. In the method shown, each unique value to be
recorded in the field in the page is recorded in a list (block
585). To find a more efficient encoding, the method starts with
a representation where b is zero (one base) and k is suffi-
ciently large (a minimum number of bits necessary) to encode
the largest value in the list as a difference or offset from the
minimum value in the list (block 586). The encoder then tries



US 9,251,066 B2

21

successively smaller values of k, which result in larger values
of' b (more bases). As each combination of b and k is evalu-
ated, those which produce encodings deemed better (e.g.,
smaller) are retained for comparison against further possible
encodings. The algorithm may then select the encoding that
results in the smallest overall size, including both the table in
the header and the total space required for the encoded field in
the tuples. For example, starting with the minimum value as
the base (block 587), the smallest value in the list that is at
least 2* greater than the current base is found (block 588). If
such a value exists (conditional block 589), then that value is
selected as a next base (block 594). If no such value exists
(conditional block 589), then the total encoded size for the
header and encoded fields is determined using the currently
selected bases and value of k. If this encoding is desirable
(e.g., the smallest so far) (conditional block 591), then this
encoding is retained (block 592). Whether the encoding is
retained or not, the value of k may be decremented by 1 (block
593) and itk is greater than or equal to zero (conditional block
595), then the process may be repeated by returning to block
587. If decrementing k results in k falling below zero, then the
process ends and the best encoding found thus far is selected
(block 596).

Referring now to FIG. 6, a generalized block diagram of
one embodiment of a multi-node network with shared map-
ping tables is shown. In the example shown, three nodes
360a-360c are used to form a cluster of mapping nodes. In one
embodiment, each of the nodes 360a-360c may be respon-
sible for one or more logical unit numbers (LUNSs). In the
depicted embodiment, a number of mapping table levels,
level 1-N, are shown. Level 1 may correspond to the oldest
level, while level N may correspond to the newest level. For
mapping table entries of LUNs managed by a particular node,
that particular node may itself have newer entries stored on
the node itself. For example, node 360a is shown to store
mapping subtables 362a and 364a. These subtables 3624 and
3626 may correspond to LUNs for which node 360« is gen-
erally responsible. Similarly, node 3605 includes subtables
3625 and 3645 which may correspond to LUNs managed by
that node, while node 360c¢ includes subtables 362¢ and 364c¢
which may correspond to LUNs managed by that node. In
such an embodiment, these “newer” level mapping table
entries are maintained only by their corresponding managing
nodes and are generally not found on other nodes.

In contrast to the above discussed relatively newer levels,
older levels (i.e., levels N-2 down to level 1) represent map-
ping table entries which may be shared by all nodes 360a-
360c in the sense that any of the nodes may be storing a copy
of'those entries. In the example shown, these older levels 370,
372, and 374 are collectively identified as shared tables 380.
Additionally, as previously discussed, in various embodi-
ments these older levels are static—apart from merging or
similar operations which are discussed later. Generally
speaking, a static layer is one which is not subject to modifi-
cation (i.e., it is “fixed”). Given that such levels are fixed in
this sense, an access to any copy of these lower levels may be
made without concern for whether another of the copies has
been, or is being, modified. Consequently, any of the nodes
may safely store a copy of the shared tables 380 and service a
request to those tables with confidence the request can be
properly serviced. Having copies of the shared tables 380
stored on multiple nodes 360 may allow use of various load
balancing schemes when performing lookups and otherwise
servicing requests.

In addition to the above, in various embodiments, the levels
380 which may be shared may be organized in a manner
which reflects the nodes 360 themselves. For example, node
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360a may be responsible for LUNs 1 and 2, node 3605 may be
responsible for LUNs 3 and 4, and node 360¢ may be respon-
sible for LUNs 5 and 6. In various embodiments, the mapping
table entries may include tuples which themselves identify a
corresponding [LUN. In such an embodiment, the shared map-
ping tables 380 may be sorted according to key value, abso-
Iute width or amount of storage space, or otherwise. If a sort
of mapping table entries in the levels 380 is based in part on
LUN, then entries 370a may correspond to LUNs 1 and 2,
entries 3705 may correspond to LUNs 3 and 4, and entries
370c¢ may correspond to LUNs 5 and 6. Such an organization
may speed lookups by a given node for a request targeted to a
particular LUN by effectively reducing the amount of data
that needs to be searched, allowing a coordinator to directly
select the node responsible for a particular LUN as the target
of a request. These and other organization and sort schemes
are possible and are contemplated. In addition, if'it is desired
to move responsibility for a LUN from one node to another,
the original node mappings for that node may be flushed to the
shared levels (e.g., and merged). Responsibility for the LUN
is then transferred to the new node which then begins servic-
ing that LUN.

Referring now to FIG. 7, a generalized block diagram of
one embodiment of a secondary index used to access a map-
pingtable is shown. As described earlier, requester data inputs
302 may be received by a key generator 304, which produces
a query key value 306. The query key value 306 is used to
access a mapping table. In some embodiments, the primary
index 310 shown in FIG. 3 may be too large (or larger than
desired) to store in RAM 172 or memory medium 130. For
example, older levels of the index may grow very large due to
merging and flattening operations described later in FIG. 10
and FIG. 11. Therefore, a secondary index 320 may be cached
for at least a portion of the primary index instead of the
corresponding portion of the primary index 310. The second-
ary index 320 may provide a more coarse level of granularity
of'location identification of data stored in the storage devices
176a-176m. Therefore, the secondary index 320 may be
smaller than the portion of the primary index 310 to which it
corresponds. Accordingly, the secondary index 320 may be
stored in RAM 172 or in memory medium 130.

In one embodiment, the secondary index 320 is divided
into partitions, such as partitions 3224-322b. Additionally,
the secondary index may be organized according to level with
the more recent levels appearing first. In one embodiment,
older levels have lower numbers and younger levels have
higher numbers (e.g., a level ID may be incremented with
each new level). Each entry of the secondary index 320 may
identify a range of key values. For example, the first entry
shown in the example may identify a range ofkey values from
0to 12 in level 22. These key values may correspond to key
values associated with a first record and a last record within a
given page of the primary index 310. In other words, the entry
in the secondary index may simply storage an identification of
key 0 and an identification of key 12 to indicate the corre-
sponding page includes entries within that range. Referring
again to FIG. 3A, partition 312a may be a page and the key
values of its first record and its last record are 0 and 12,
respectively. Therefore, an entry within the secondary index
320 stores the range 0 to 12 as shown in FIG. 7. Since remap-
pings are maintained in the levels within the mapping table, a
range of key values may correspond to multiple pages and
associated levels. The fields within the secondary index 320
may store this information as shown in FIG. 7. Each entry
may store one or more corresponding unique virtual page
identifiers (IDs) and associated level IDs corresponding to the
range of'key values. Each entry may also store corresponding
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status information such as validity information. The list of
maintained page IDs and associated level IDs may indicate
where a given query key value might be stored, but not con-
firm that the key value is present in that page and level. The
secondary index 320 is smaller than the primary index 310,
but also has a coarse-level of granularity of location identifi-
cation of data stored in the storage devices 176a-176m. The
secondary index 320 may be sufficiently small to store in
RAM 172 or in memory medium 130.

When the secondary index 320 is accessed with a query key
value 306, it may convey one or more corresponding page [Ds
and associated level IDs. These results are then used to access
and retrieve portions of the stored primary index. The one or
more identified pages may then be searched with the query
key value to find a physical pointer value. In one embodiment,
the level IDs may be used to determine a youngest level of the
identified one or more levels that also store the query key
value 306. A record within a corresponding page may then be
retrieved and a physical pointer value may be read for pro-
cessing a storage access request. In the illustrated example,
the query key value 27 is within the range of keys 16 to 31.
The page IDs and level IDs stored in the corresponding entry
are conveyed with the query key value to the mapping table.

Referring now to FIG. 8, a generalized block diagram of
one embodiment of a tertiary index used to access a mapping
table is shown. Circuit and logic portions corresponding to
those of FIG. 4 are numbered identically. As described earlier,
the primary index 310 shown in FIG. 3 may be too large to
store in RAM 172 or memory medium 130. In addition, as the
mapping table 340 grows, the secondary index 320 may also
become too large to store in these memories. Therefore, a
tertiary index 330 may be accessed prior to the secondary
index 320, which may still be faster than accessing the pri-
mary index 310.

The tertiary index 330 may provide a more coarse level of
granularity than the secondary index 320 of location identi-
fication of data stored in the storage devices 176a-176m.
Therefore, the tertiary index 330 may be smaller than the
portion of the secondary index 320 to which it corresponds. It
is noted that each of the primary index 310, the secondary
index 320, the tertiary index 330, and so forth, may be stored
in a compressed format. The compressed format chosen may
be a same compressed format used to store information
within the mapping table 340.

In one embodiment, the tertiary index 330 may include
multiple partitions, such as partitions 3324, 33256 and so forth.
The tertiary index 330 may be accessed with a query key
value 306. In the illustrated example, a query key value 306 of
“27” is found to be between a range of key values from 0 to 78.
A first entry in the tertiary index 330 corresponds to this key
value range. A column in the tertiary index 330 may indicate
which partition to access within the secondary index 320. In
the illustrated example, a key value range of 0 to 78 corre-
sponds to partition 0 within the secondary index 320.

It is also noted a filter (not shown) may be accessed to
determine if a query key value is not within any one of the
indexes 310-330. This filter may be a probabilistic data struc-
ture that determines whether an element is a member of a set.
False positives may be possible, but false negatives may not
be possible. One example of such a filter is a Bloom filter. If
an access of such a filter determines a particular value is notin
the full index 142, then no query is sent to the storage. If an
access of the filter determines the query key value is in a
corresponding index, then it may be unknown whether a
corresponding physical pointer value is stored in the storage
devices 176a-176m.
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In addition to the above, in various embodiments one or
more overlay tables may be used to modify or elide tuples
provided by the mapping table in response to a query. Such
overlay tables may be used to apply filtering conditions for
use in responding to accesses to the mapping table or during
flattening operations when a new level is created. In some
embodiments, the overlay table may be organized as time
ordered levels in a manner similar to the mapping table
described above. In other embodiments, they be organized
differently. Keys for the overlay table need not match the keys
for the underlying mapping table. For example, an overlay
table may contain a single entry stating that a particular vol-
ume has been deleted or is otherwise inaccessible (e.g., there
is no natural access path to query this tuple), and that a
response to a query corresponding to a tuple that refers to that
volume identifier is instead invalid. In another example, an
entry in the overlay table may indicate that a storage location
has been freed, and that any tuple that refers to that storage
location is invalid, thus invalidating the result of the lookup
rather than the key used by the mapping table. In some
embodiments, the overlay table may modify fields in
responses to queries to the underlying mapping table. In some
embodiments, a key range (range of key values) may be used
to efficiently identify multiple values to which the same
operation (eliding or modification) is applied. In this manner,
tuples may (effectively) be “deleted” from the mapping table
by creating an “elide” entry in the overlay table and without
modifying the mapping table. In this case, the overlay table
may include keys with no associated non-key data fields.

Turning now to FIG. 9, one embodiment of a method for
processing a read request in a system including mapping and
overlay tables is shown. Responsive to a read request being
received (block 900), a mapping table key (block 908) and
first overlay table key (block 902) corresponding to the
request are generated. In this example, access to the overlay
and mapping tables is shown as occurring concurrently. How-
ever, in other embodiments, accesses to the tables may be
performed non-concurrently (e.g., sequentially or otherwise
separate intime) in any desired order. Using the key generated
for the mapping table, a corresponding tuple may be retrieved
from the mapping table (block 910). If the first overlay table
contains an “elide” entry corresponding to the overlay table
key (conditional block 906), any tuple found in the mapping
table is deemed invalid and an indication to this effect may be
returned to the requester. On the other hand, if the overlay
table contains a “modify” entry corresponding to the overlay
table key (conditional block 912), the values in the first over-
lay table entry may be used to modify one or more fields in the
tuple retrieved from the mapping table (block 922). Once this
process is done, a second overlay table key is generated
(block 914) based on the tuple from the mapping table
(whether modified or not) and a second lookup is done in a
second overlay table (block 916) which may or may notbe the
same table as the first overlay table. If an “elide” entry is
found in the second overlay table (conditional block 920), the
tuple from the mapping table is deemed invalid (block 918). If
a “modify” entry is found in the second overlay table (condi-
tional block 924), one or more fields of the tuple from the
mapping table may be modified (block 926). Such modifica-
tion may include dropping a tuple, normalizing a tuple, or
otherwise. The modified tuple may then be returned to the
requester. If the second overlay table does not contain a
modify entry (conditional block 924), the tuple may be
returned to the requester unmodified. In some embodiments,
atleast some portions of the overlay table(s) may be cached to
provide faster access to their contents. In various embodi-
ments, a detected elide entry in the first overlay table may
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serve to short circuit any other corresponding lookups (e.g.,
blocks 914, 916, etc.). In other embodiments, accesses may
be performed in parallel and “raced.” Numerous such
embodiments are possible and are contemplated.

Turning now to FIG. 10, a generalized block diagram of
one embodiment of a flattening operation for levels within a
mapping table is shown. In various embodiments, a flattening
operation may be performed in response to detecting one or
more conditions. For example, over time as the mapping table
340 grows and accumulates levels due to insertions of new
records, the cost of searching more levels for a query key
value may become undesirably high. In order to constrain the
number of levels to search, multiple levels may be flattened
into a single new level. For example, two or more levels which
are logically adjacent or contiguous in time order may be
chosen for a flattening operation. Where two or more records
correspond to a same key value, the youngest record may be
retained while the others are not included in the new “flat-
tened” level. In such an embodiment, the newly flattened level
will return a same result for a search for a given key value as
would be provided by a search of the corresponding multiple
levels. Since the results of searches in the new flattened level
do not change as compared to the two or more levels it
replaces, the flattening operation need not be synchronized
with update operations to the mapping table. In other words,
flattening operations on a table may be performed asynchro-
nously with respect to updates to the table.

As previously noted, older levels are fixed in the sense that
their mappings are not modified (i.e., a mapping from A to B
remains unchanged). Consequently, modifications to the lev-
els being flattened are not being made (e.g., due to user writes)
and synchronization locks of the levels are not required. Addi-
tionally, in a node-based cluster environment where each
node may store a copy of older levels of the index (e.g., as
discussed in relation to FIG. 6), flattening operations may be
undertaken on one node without the need to lock correspond-
ing levels in other nodes. Consequently, processing may con-
tinue in all nodes while flattening takes place in an asynchro-
nous manner on any of the nodes. At alater point in time, other
nodes may flatten levels, or use an already flattened level. In
one embodiment, the two or more levels which have been
used to form a flattened level may be retained for error recov-
ery, mirroring, or other purposes. In addition to the above, in
various embodiments, records that have been elided may not
be reinserted in to the new level. The above described flatten-
ing may, for example, be performed responsive to detecting
the number of levels in the mapping table has reached a given
threshold. Alternatively, the flattening may be performed
responsive to detecting the size of one or more levels has
exceeded a threshold. Yet another condition that may be con-
sidered is the load on the system. The decision of whether to
flatten the levels may consider combinations of these condi-
tions in addition to considering them individually. The deci-
sion of whether to flatten may also consider both the present
value for the condition as well as a predicted value for the
condition in the future. Other conditions for which flattening
may be performed are possible and are contemplated.

In the illustrated example, the records are shown simply as
key and pointer pairs. The pages are shown to include four
records for ease of illustration. A level “F” and its next con-
tiguous logical neighbor, level “F-1"may be considered fora
flattening operation. Level “F” may be younger than Level
“F-17. Although two levels are shown to be flattened here, it
is possible and contemplated that three or more levels may be
chosen for flattening. In the example shown, Level “F-1”
may have records storing a same key value found in Level
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“F”. Bidirectional arrows are used to identify the records
storing a same key value across the two contiguous levels.

The new Level “New F” includes a key corresponding to
the duplicate key values found in Level “F” and Level “F-1".
In addition, the new Level “New F” includes a pointer value
corresponding to the youngest (or younger in this case) record
of the records storing the duplicate key value. For example,
each of Level “F” and Level “F-1" includes a record storing
the key value 4. The younger record is in Level “F”” and this
record also stores the pointer value 512. Accordingly, the
Level “F-1"includes a record storing the key value 4 and also
the pointer value 512, rather than the pointer value 656 found
in the older Level “F-1". Additionally, the new Level “New
F” includes records with unique key values found between
Level “F” and Level “F-1". For example, the Level “F-1"
includes records with the key and pointer pair of 6 and 246
found in Level “F” and the key and pointer pair of 2 and 398
found in Level “F-1". As shown, each of the pages within the
levels is sorted by key value.

As noted above, in various embodiments an overlay table
may be used to modify or elide tuples corresponding to key
values in the underlying mapping table. Such an overlay
table(s) may be managed in a manner similar to that of the
mapping tables. For example, an overlay table may be flat-
tened and adjacent entries merged together to save space.
Alternatively, an overlay table may be managed in a manner
different from that used to manage mapping tables. In some
embodiments, an overlay table may contain a single entry that
refers to a range of overlay table keys. In this way, the size of
the overlay table can be limited. For example, if the mapping
table contains k valid entries, the overlay table (after flatten-
ing) need contain no more than k+1 entries marking ranges as
invalid, corresponding to the gaps between valid entries in the
mapping table. Accordingly, the overlay table may used to
identify tuples that may be dropped from the mapping table in
a relatively efficient manner. In addition to the above, while
the previous discussion describes using overlay table to elide
or modify responses to requests from the mapping table(s),
overlay tables may also be used to elide or modify values
during flattening operations of the mapping tables. Accord-
ingly, when a new level is created during a flattening opera-
tion of a mapping table, a key value that might otherwise be
inserted into the new level may be elided. Alternatively, a
value may be modified before insertion in the new level. Such
modifications may result in a single record corresponding to
a given range of key values in the mapping table being
replaced (in the new level) with multiple records—each cor-
responding to a subrange of the original record. Additionally,
a record may be replaced with a new record that corresponds
to a smaller range, or multiple records could be replaced by a
single record whose range covers all ranges of the original
records. All such embodiments are contemplated.

Referring now to FIG. 11, a generalized block diagram of
an embodiment of a flattening operation for levels within a
mapping table is shown. As previously discussed, levels may
be time ordered. In the illustrated example, a Level “F” com-
prising one or more indexes and corresponding mappings is
logically located above older Level “F-1". Also, Level “F” is
located logically below younger Level “F+1”. Similarly,
Level “F-2” is logically located above younger Level “F-1”
and Level “F+2” is logically located below older Level
“F+1”. In one example, levels “F”” and “F-1” may be consid-
ered for a flattening operation. Bidirectional arrows are used
to illustrate there are records storing same key values across
the two contiguous levels.

As described earlier, a new Level “New F” includes key
values corresponding to the duplicate key values found in
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Level “F” and Level “F-1". In addition, the new Level “New
F” includes a pointer value corresponding to the youngest (or
younger in this case) record of the records storing the dupli-
cate key value. Upon completion of the flattening operation,
the Level “F” and the Level “F-1" may not yet be removed
from the mapping table. Again, in a node-based cluster, each
node may verity it is ready to utilize the new single level, such
as Level “New F”, and no longer use the two or more levels it
replaces (such as Level “F” and Level “F-17). This verifica-
tion may be performed prior to the new level becoming the
replacement. In one embodiment, the two or more replaced
levels, such as Level “F” and Level “F-1", may be kept in
storage for error recovery, mirroring, or other purposes. In
order to maintain the time ordering of the levels and their
mappings, the new flattened level F is logically placed below
younger levels (e.g., level F+1) and above the original levels
that it replaces (e.g., level F and level F-1).

Turning now to FIG. 12, one embodiment of a method 1000
for flattening levels within a mapping table is shown. The
components embodied in the network architecture 100 and
the mapping table 340 described above may generally operate
in accordance with method 1000. For purposes of discussion,
the steps in this embodiment are shown in sequential order.
However, some steps may occur in a different order than
shown, some steps may be performed concurrently, some
steps may be combined with other steps, and some steps may
be absent in another embodiment.

In block 1002, storage space is allocated for a mapping
table and corresponding indexes. In block 1004, one or more
conditions are determined for flattening two or more levels
within the mapping table. For example, a cost of searching a
current number of levels within the mapping table may be
greater than a cost of performing a flattening operation. Addi-
tionally, a cost may be based on at least one of the current (or
predicted) number of levels in the structure to be flattened, the
number of entries in one or more levels, the number of map-
ping entries that would be elided or modified, and the load on
the system. Cost may also include a time to perform a corre-
sponding operation, an occupation of one or more buses,
storage space used during a corresponding operation, a num-
ber of duplicate entries in a set of levels has reached some
threshold, and so forth. In addition, a count of a number of
records within each level may be used to estimate when a
flattening operation performed on two contiguous levels may
produce a new single level with a number of records equal to
twice a number of records within a next previous level. These
conditions taken singly or in any combination, and others, are
possible and are contemplated.

In block 1006, the indexes and the mapping table are
accessed and updated as data is stored and new mappings are
found. A number of levels within the mapping table increases
as new records are inserted into the mapping table. If a con-
dition for flattening two or more levels within the mapping
table is detected (conditional block 1008), then in block 1010,
one or more groups of levels are identified for flattening. A
group of levels may include two or more levels. In one
embodiment, the two or more levels are contiguous levels.
Although the lowest levels, or the oldest levels, may be the
best candidates for flattening, a younger group may also be
selected.

In block 1012, for each group a new single level compris-
ing the newest records within a corresponding group is pro-
duced. In the earlier example, the new single Level “New F”
includes the youngest records among the Level “F” and the
Level “F+1”. In block 1014, in a node-based cluster, an
acknowledgment may be requested from each node within the
cluster to indicate a respective node is ready to utilize the new
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levels produced by the flattening operation. When each node
acknowledges that it can utilize the new levels, in block 1016,
the current levels within the identified groups are replaced
with the new levels. In other embodiments, synchronization
across nodes is not needed. In such embodiments, some nodes
may begin using a new level prior to other nodes. Further,
some nodes may continue to use the original level even after
newly flattened levels are available. For example, a particular
node may have original level data cached and used that in
preference to using non-cached data of a newly flattened
level. Numerous such embodiments are possible and are con-
templated.

Turning now to FIG. 13, one embodiment of a method 1100
for efficiently processing bulk array tasks within a mapping
table is shown. Similar to the other described methods, the
components embodied in the network architecture 100 and
the mapping table 340 described above may generally operate
in accordance with method 1100. In addition, the steps in this
embodiment are shown in sequential order. However, some
steps may occur in a different order than shown, some steps
may be performed concurrently, some steps may be combined
with other steps, and some steps may be absent in another
embodiment.

Storing the information in a compressed format within the
mapping table may enable fine-grained mapping, which may
allow direct manipulation of mapping information within the
mapping table as an alternative to common bulk array tasks.
The direct map manipulation may reduce I/O network and bus
traffic. As described earlier, Flash memory has a low “seek
time”, which allows a number of dependent read operations to
occur in less time than a single operation from a spinning
disk. These dependent reads may be used to perform online
fine-grained mappings to integrate space-saving features like
compression and deduplication. In addition, these dependent
read operations may allow the storage controller 174 to per-
form bulk array tasks entirely within a mapping table instead
of accessing (reading and writing) the user data stored within
the storage devices 176a-176m.

In block 1102, a large or bulk array task is received. For
example, a bulk copy or move request may correspond to a
backup of a dozens or hundreds of virtual machines in addi-
tion to enterprise application data being executed and updated
by the virtual machines. The amount of data associated with
the received request associated with a move, branch, clone, or
copy of all of this data may be as large as 16 gigabytes (GB)
or larger. If the user data was accessed to process this request,
a lot of processing time may be spent on the request and
system performance decreases. In addition, a virtualized
environment typically has less total input/output (1/O)
resources than a physical environment.

In block 1104, the storage controller 174 may store an
indication corresponding to the received request that relates a
range of new keys to a range of old keys, wherein both the
ranges of keys correspond to the received request. For
example, if the received request is to copy of 16 GB of data,
a start key value and an end key value corresponding to the 16
GB of data may be stored. Again, each of the start and the end
key values may include a volume 1D, a logical or virtual
address within the received request, a snapshot ID, a sector
number and so forth. In one embodiment, this information
may be stored separate from the information stored in the
indexes, such as the primary index 310, the secondary index
320, the tertiary index 330, and so forth. However, this infor-
mation may be accessed when the indexes are accessed dur-
ing the processing of later requests.

In block 1106, the data storage controller 174 may convey
a response to a corresponding client of the client computer
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systems 110a-110c¢ indicating completion of the received
request without prior access of user data. Therefore, the stor-
age controller 174 may process the received request with low
or no downtime and with no load on processor 122.

In block 1108, the storage controller 174 may set a condi-
tion, an indication, or a flag, or buffer update operations, for
updating one or more records in the mapping table corre-
sponding to the new keys replacing the old keys in the map-
ping table. For both a move request and a copy request, one or
more new records corresponding to the new keys may be
inserted in the mapping table. The keys may be inserted in a
created new highest level as described earlier. For a move
request, one or more old records may be removed from the
mapping table after a corresponding new record has been
inserted in the mapping table. Either immediately or at a later
time, the records in the mapping table are actually updated.

For a zeroing or an erase request, an indication may be
stored that a range of key values now corresponds to a series
of binary zeroes. Additionally, as discussed above, overlay
tables may be used to identify key values which are not (or no
longer) valid. The user data may not be overwritten. For an
erase request, the user data may be overwritten at a later time
when the “freed” storage locations are allocated with new
data for subsequent store (write) requests. For an externally-
directed defragmentation request, contiguous addresses may
be chosen for sector reorganization, which may benefit appli-
cations executed on a client of the client computer systems
110a-110c.

If the storage controller 174 receives a data storage access
request corresponding to one of the new keys (conditional
block 1110), and the new key has already been inserted in the
mapping table (conditional block 1112), then in block 1114,
the indexes and the mapping table may be accessed with the
new key. For example, either the primary index 310, the
secondary index 320, or the tertiary index 330 may be
accessed with the new key. When one or more pages of the
mapping table are identified by the indexes, these identified
pages may then be accessed. Inblock 1116, the storage access
request may be serviced with a physical pointer value found
in the mapping table that is associated with the new key.

If the storage controller 174 receives a data storage access
request corresponding to one of the new keys (conditional
block 1110), and the new key has not already been inserted in
the mapping table (conditional block 1112), then in block
1118, the indexes and the mapping table may be accessed
with a corresponding old key. The storage holding the range
of old keys and the range of new keys may be accessed to
determine the corresponding old key value. When one or
more pages of the mapping table are identified by the indexes,
these identified pages may then be accessed. In block 1120,
the storage access request may be serviced with a physical
pointer value found in the mapping table that is associated
with the old key.

Turning now to FI1G. 14, a generalized block diagram illus-
trating an embodiment of a data layout architecture within a
storage device is shown. In one embodiment, the data storage
locations within the storage devices 176a-176m may be
arranged into redundant array of independent devices (RAID)
arrays. As shown, different types of data may be stored in the
storage devices 176a-176k according to a data layout archi-
tecture. In one embodiment, each of the storage devices 176a-
176k is an SSD. An allocation unit within an SSD may include
one or more erase blocks within an SSD.

The user data 1230 may be stored within one or more pages
included within one or more of the storage devices 176a-
176k. Within each intersection of a RAID stripe and one of the
storage devices 176a-176k, the stored information may be
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formatted as a series of logical pages. Each logical page may
in turn include a header and a checksum for the data in the
page. When a read is issued it may be for one or more logical
pages and the data in each page may be validated with the
checksum. As each logical page may include a page header
that contains a checksum for the page (which may be referred
to as a “media” checksum), the actual page size for data may
be smaller than one logical page. In some embodiments, for
pages storing inter-device recovery data 1250, such as RAID
parity information, the page header may be smaller, so that
the parity page protects the page checksums in the data pages.
In other embodiments, the checksum in parity pages storing
inter-device recovery data 1250 may be calculated so that the
checksum of the data page checksums is the same as the
checksum of the parity page covering the corresponding data
pages. In such embodiments, the header for a parity page need
not be smaller than the header for a data page.

The inter-device ECC data 1250 may be parity information
generated from one or more pages on other storage devices
holding user data. For example, the inter-device ECC data
1250 may be parity information used in a RAID data layout
architecture. Although the stored information is shown as
contiguous logical pages in the storage devices 176a-176%, it
is well known in the art the logical pages may be arranged in
a random order, wherein each of the storage devices 176a-
176k is an SSD.

The intra-device ECC data 1240 may include information
used by an intra-device redundancy scheme. An intra-device
redundancy scheme utilizes ECC information, such as parity
information, within a given storage device. This intra-device
redundancy scheme and its ECC information corresponds to
a given device and may be maintained within a given device,
but is distinct from ECC that may be internally generated and
maintained by the device itself. Generally speaking, the inter-
nally generated and maintained ECC of the device is invisible
to the system within which the device is included.

The intra-device ECC data 1240 may also be referred to as
intra-device error recovery data 1240. The intra-device error
recovery data 1240 may be used to protect a given storage
device from latent sector errors (LSEs). An LSE is an error
that is undetected until the given sector is accessed. There-
fore, any data previously stored in the given sector may be
lost. A single LSE may lead to data loss when encountered
during RAID reconstruction after a storage device failure.
The term “sector” typically refers to a basic unit of storage on
a HDD, such as a segment within a given track on the disk.
Here, the term “sector” may also refer to a basic unit of
allocation on a SSD. Latent sector errors (LSEs) occur when
a given sector or other storage unit within a storage device is
inaccessible. A read or write operation may not be able to
complete for the given sector. In addition, there may be an
uncorrectable error-correction code (ECC) error.

The intra-device error recovery data 1240 included within
a given storage device may be used to increase data storage
reliability within the given storage device. The intra-device
error recovery data 1240 is in addition to other ECC informa-
tion that may be included within another storage device, such
as parity information utilized in a RAID data layout architec-
ture.

Within each storage device, the intra-device error recovery
data 1240 may be stored in one or more pages. As is well
known by those skilled in the art, the intra-device error recov-
ery data 1240 may be obtained by performing a function on
chosen bits of information within the user data 1230. An
XOR-based operation may be used to derive parity informa-
tion to store in the intra-device error recovery data 1240.
Other examples of intra-device redundancy schemes include
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single parity check (SPC), maximum distance separable
(MDS) erasure codes, interleaved parity check codes (IPC),
hybrid SPC and MDS code (MDS+SPC), and column diago-
nal parity (CDP). The schemes vary in terms of delivered
reliability and overhead depending on the manner the data
1240 is computed.

In addition to the above described error recovery informa-
tion, the system may be configured to calculate a checksum
value for a region on the device. For example, a checksum
may be calculated when information is written to the device.
This checksum is stored by the system. When the information
is read back from the device, the system may calculate the
checksum again and compare it to the value that was stored
originally. If the two checksums differ, the information was
not read properly, and the system may use other schemes to
recover the data. Examples of checksum functions include
cyclical redundancy check (CRC), MDS, and SHA-1.

An erase block within an SSD may comprise several pages.
A page may include 4 KB of data storage space. An erase
block may include 64 pages, or 256 KB. In other embodi-
ments, an erase block may be as large as 1 megabyte (MB),
and include 256 pages. An allocation unit size may be chosen
in a manner to provide both sufficiently large sized units and
a relatively low number of units to reduce overhead tracking
of the allocation units. In one embodiment, one or more state
tables may maintain a state of an allocation unit (allocated,
free, erased, error), a wear level, and a count of a number of
errors (correctable and/or uncorrectable) that have occurred
within the allocation unit. In one embodiment, an allocation
unit is relatively small compared to the total storage capacity
of an SSD. Other amounts of data storage space for pages,
erase blocks and other unit arrangements are possible and
contemplated.

The metadata 1260 may include page header information,
RAID stripe identification information, log data for one or
more RAID stripes, and so forth. In various embodiments, the
single metadata page at the beginning of each stripe may be
rebuilt from the other stripe headers. Alternatively, this page
could be at a different offset in the parity shard so the data can
be protected by the inter-device parity. In one embodiment,
the metadata 1260 may store or be associated with particular
flag values that indicate this data is not to be deduplicated.

In addition to inter-device parity protection and intra-de-
vice parity protection, each of the pages in storage devices
176a-176k may comprise additional protection such as a
checksum stored within each given page. The checksum (8
byte, 4 byte, or otherwise) may be placed inside a page after
a header and before the corresponding data, which may be
compressed. For yet another level of protection, data location
information may be included in a checksum value. The data in
each of the pages may include this information. This infor-
mation may include both a virtual address and a physical
address. Sector numbers, data chunk and offset numbers,
track numbers, plane numbers, and so forth may be included
in this information as well. This mapping information may
also be used to rebuild the address translation mapping table
if the content of the table is lost.

In one embodiment, each of the pages in the storage
devices 176a-176k stores a particular type of data, such as the
data types 1230-1260. Alternatively, pages may store more
than one type of data. The page header may store information
identifying the data type for a corresponding page. In one
embodiment, an intra-device redundancy scheme divides a
device into groups of locations for storage of user data. For
example, a division may be a group of locations within a
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device that correspond to a stripe within a RAID layout. In the
example shown, only two stripes, 1270a and 12704, are
shown for ease of illustration.

In one embodiment, a RAID engine within the storage
controller 174 may determine a level of protection to use for
storage devices 176a-176k. For example, a RAID engine may
determine to utilize RAID double parity for the storage
devices 176a-176k. The inter-device redundancy data 1250
may represent the RAID double parity values generated from
corresponding user data. In one embodiment, storage devices
1765 and 176k may store the double parity information. It is
understood other levels of RAID parity protection are pos-
sible and contemplated. In addition, in other embodiments,
the storage of the double parity information may rotate
between the storage devices rather than be stored within
storage devices 176; and 176k for each RAID stripe. The
storage of the double parity information is shown to be stored
in storage devices 1765 and 176% for ease of illustration and
description. Although each of the storage devices 176a-176&
comprises multiple pages, only page 1212 and page 1220 are
labeled for ease of illustration.

Referring now to FIG. 15, one embodiment of a method for
performing deduplication is shown. The components embod-
ied in the network architecture 100 described above may
generally operate in accordance with method. For purposes of
discussion, the steps in this embodiment are shown in sequen-
tial order. However, some steps may occur in a different order
than shown, some steps may be performed concurrently,
some steps may be combined with other steps, and some steps
may be absent in another embodiment.

In block 1502, one or more given data components for an
operation are received. Such data components may corre-
spond to a received write request, a garbage collection opera-
tion, or otherwise. In various embodiments, data sent from
one of the client computer systems 110a-110¢ may be in the
form of a data stream, such as a byte stream. As is well known
to those skilled in the art, a data stream may be divided into a
sequence of fixed-length or variable-length data components,
or “chunks”, where a “chunk™ is a sub-file content-address-
able unit of data. A chunking algorithm may perform the
dividing of the data stream. In various embodiments, a table
may be used to map data corresponding to particular file types
to a most appropriate chunking method. In some cases a file’s
type may be determined by referring to its file name exten-
sion. Alternatively, in cases where a file type corresponding to
data is not indicated or otherwise directly known, guesses as
to the type of file to which data corresponds may be made and
used to inform the chunking algorithm used. For example, a
guess as to file type could be based on the data in the block or
the LUN in which the block is stored. Other methods for
ascertaining a file type to which data corresponds are possible
and are contemplated. The chunks later may be stored in one
of the data storage arrays 120a-1205 to allow for sharing of
the chunks. Numerous such embodiments are possible and
are contemplated.

Subsequent to receiving the data, a particular fingerprint
algorithm 1504 may be chosen to produce a data component
fingerprint value for a given data component. For example, a
hash function, such as some or all of the output bits from
MDS, SHA1, SHA-256, cyclic-redundancy code (CRC), or
otherwise, may be used to calculate a corresponding finger-
print. Generally speaking, in order to know if a given data
component corresponding to a received write request may
already be stored in one of the data storage arrays 120a-1205,
a calculated fingerprint for the given data component may be
compared to fingerprints of data components stored in one or
more of the data storage arrays 120a-1205. If there is no
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matching fingerprint, there is no copy of the data component
already stored on the system. If at least one fingerprint
matches, then there may already be a matching data compo-
nent stored on the system. However, in some embodiments, it
is also possible that two non-identical data components have
the same fingerprint. Using the generated fingerprint value for
a data component, a search may be performed to determine if
there is another data component already present in the system
that has a matching fingerprint value. In various embodi-
ments, such fingerprint values may be stored in one or more
fingerprint tables within the system. Accordingly, a determi-
nation as to which of the fingerprint tables to search may be
made (block 1506).

Having established which fingerprint tables are to be
searched, one of the tables is selected (block 1508) and a
decision is made as to whether the selected table is searched
(decision block 1510). A number of factors may be consid-
ered when deciding whether to search a given table. For
example, resource usage and performance issues may be con-
sidered. If the table is searched, then a matching fingerprint
may be found (decision block 1512). In various embodi-
ments, if a matching fingerprint is found, then the correspond-
ing data already stored in the system may be identical to the
received data. However, the matching fingerprint may not be
definitive proof'that the data itself matches. Such might be the
case where fingerprints collide or otherwise. Therefore, if a
matching fingerprint is found, then a determination may be
made as to whether further verification steps are to be per-
formed. Generally speaking, verifying that data is a match
entails reading the stored data (decision block 1514) and
comparing the read data to the received data (decision block
1516). If the stored data is already contained in memory, there
is generally no need to re-read it from its stored location. If the
data matches, then the received data is deemed redundant and
a new link is created between the already existing data (e.g.,
as identified by a physical address) and the transaction cor-
responding to the received data. For example, a new link may
be created between a write transaction virtual address and the
already stored data. In one embodiment, both a mapping table
and a link table (to be discussed more fully later) may be used
for storing such newly identified links.

At various steps in the process (e.g., blocks 1510, 1512,
1514, and 1516), verification of a data match has not been
achieved and a determination is made as to whether the search
should continue. As noted above, resource and/or perfor-
mance issues may be considered when making such a deter-
mination. If more tables are to be searched (decision block
1522), then one of the tables may be selected (block 1508),
and the process repeated. If verification of a data match is not
achieved at this time (as in blocks 1516 and 1518), then
confirmation that the data is redundant is not made and the
received data is written to storage (block 1524). Additionally,
a new deduplication entry may be created (block 1526) as
well as updating other tables (block 1520) such as an address
mapping table or otherwise.

It is noted that while the above discussion describes a
process whereby tables to search are determined (block 1506)
prior to proceeding, in other embodiments an identification of
more than one table may not be made in advance. Rather,
identification of a given table for search may be determined
one at a time (or only partially) as needed. Alternatively, a
combination of such approaches may be used. All such
embodiments are contemplated.

In addition to the general method depicted in FIG. 15,
additional processes may be included which serve to improve
the overall deduplication process. In particular, various
attributes may be maintained which are used to identify which
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fingerprint tables might be searched and whether to search a
given identified table. Further, other attributes may be main-
tained that are used to determine into which fingerprint
table(s) a given fingerprint is stored. For example, as will be
described in more detail below, fingerprints whose data is
expected to be deduplicated more frequently may be main-
tained in a fingerprint table which has a higher priority for
being searched. Alternatively, fingerprints corresponding to
data of a given type may be placed in one fingerprint table
rather than another. By storing fingerprints within the finger-
print tables in such a manner, system performance and
resource usage may be improved.

It is noted that in various embodiments the access to fin-
gerprint tables shown in FIG. 15 may not be performed, such
as when a Bloom filter or other mechanism indicates the
fingerprint is not present in the fingerprint tables. Addition-
ally, in some embodiments, an address to which a write trans-
action is directed may correspond to an address range which
has known attributes. For example, a received write transac-
tion could be directed to a particular volume which is known
to store data unlikely to be deduplicated. For example, data
corresponding to a given database may be deemed less likely
to be deduplicated, while data corresponding to a virtual
machine may be deemed more likely to be deduplicated. For
example, a fingerprint table corresponding to a volume
including data believed to be more likely to be deduplicated
may be larger than would otherwise be the case. In various
embodiments, a volume table may include attribute related
information that may be used in such a way. In other embodi-
ments, other tables may be used for storing and maintaining
such attribute related information. In addition to controlling
the selection of fingerprint tables to be searched, limits on the
number of accesses to a given storage medium may be made.
In addition to utilizing various attributes to limit the finger-
print table search, various conditions such conditions as those
related to resource usage and performance may be considered
when limiting the fingerprint table search.

In one embodiment, a deduplication table may be parti-
tioned or otherwise comprise multiple fingerprint tables.
Each entry within a given table has an associated probability
or arange of probabilities of a corresponding data component
being deduplicated. In one example, for a received write
request, an in-line deduplication operation may access a first
fingerprint table with computed fingerprint values corre-
sponding to one or more data components. If the computed
fingerprint values are not found within the first fingerprint
table, then the in-line deduplication operation may stop and
allow a data component to be written to one of the storage
devices 176a-176m. In another example, according to a strat-
egy based on the associated attributes, if the computed fin-
gerprint values are not found in the first fingerprint table, then
a subsequent access of a second fingerprint table may occur.
It the computed fingerprint values are not found in the second
fingerprint table, then the in-line deduplication operation may
finish for a given data component and allow the given data
component to be written to one of the storage devices 176a-
176m. In one embodiment, both the first and the second
fingerprint tables may be concurrently accessed. Data com-
ponents written to the storage devices 176a-176m may be
deduplicated during a later post-process deduplication opera-
tion. In one embodiment, although a post-process deduplica-
tion operation may be performed concurrently with a garbage
collection operation, the accesses for the post-process dedu-
plication operation may occur similarly as for an in-line dedu-
plication operation. For example, the first fingerprint table
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may be accessed before a second fingerprint table. In another
embodiment, the entries of the fingerprint tables may be
accessed concurrently.

Asnoted above, in various embodiments, attributes may be
used to determine where a fingerprint value is stored within
multiple fingerprint tables of a larger deduplication table.
FIG. 16 illustrates one embodiment of a method 1600 for
using such attributes. Block 1601 generally corresponds to
the establishment of a strategy to be used for the following
steps. This strategy may be determined at system startup
and/or dynamically at any time during system operation. In
some cases, a change in strategy may result in a change in the
nature of the attributes which are maintained. Should such a
change in strategy occur, the system may simultaneously
maintain data and attributes corresponding to multiple strat-
egies. For example, a change in strategy may affect only
subsequently stored data. In other embodiments, data and
attributes maintained according to a prior strategy may be
rebuilt to conform to a newer strategy. All such embodiments
are contemplated. In block 1602, one or more storage devices
may be selected for use in a storage subsystem. For example,
one or more storage devices 176a-176m within one or more of
device groups 173-173m may be chosen for data storage use.
In addition, more than one of the storage data arrays 120a-
1205 may be chosen for this data storage use. An amount of
storage space and corresponding address space may be cho-
sen prior to choosing one or more of the storage devices
176a-176m. The data storage space may be used for end-user
applications executing on client computer systems 110a-
110c, corresponding inter-device parity information used in a
RAID architecture, corresponding intra-device redundancy
information, header and metadata information, and so forth.

In block 1604, one or more corresponding attributes are
identified for a given data component. Examples of such
attributes include a number of accesses to the given data
component, a data component age, a data component size, a
total number of times the given data component has been
deduplicated, a number of times the given data component
has been deduplicated for a given entry in a deduplication
table, an amount and/or type of compression used for the data
component, and so forth. In various embodiments, these
attributes may be maintained and updated over time. For
example, the attributes for a given data component may be
updated responsive to an access of the given data component.
In some embodiments, the granularity with which such
attributes are maintained and/or updated may vary. For
example, rather than updating attributes on a per data com-
ponent basis, attributes corresponding to an identifiable group
of data components such as a volume or subvolume may be
updated. As described earlier, these maintained attributes
may affect storage efficiency.

In block 1606, one or more events for updating the one or
more attributes are identified. Examples of such events may
include a deduplication operation, receiving a read or a write
request, a garbage collection operation, a trimming operation,
a secure erase operation, an update of attributes correspond-
ing to neighboring data components, reaching a given time
threshold, and so forth. If a given event of the identified events
occurs (decision block 1608), one or more attributes corre-
sponding to the given event may be retrieved (block 1610).
For example, deduplication of a data component may be
detected. In response, attributes associated with the data com-
ponent may be retrieved (block 1610). Ifthe current algorithm
indicates a change in location for a fingerprint, then such a
change may be made (block 1612). For example, if a success-
ful deduplication of a data component results in the number of
successful deduplications for that block reaching or exceed-
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ing a given threshold, then the block may move from being
deemed a low(er) deduplicating block to a high(er) dedupli-
cating block. Such a change may in turn lead to entering the
fingerprint into a table with a higher deemed probability of
deduplication, and potentially removing the fingerprint from
the table in which it is currently stored. This may be referred
to as “promoting” the fingerprint (entry). Alternatively, an
entry corresponding to a block may be “demoted” if dedupli-
cation of the block falls below a given threshold. In such a
case, a corresponding fingerprint may be removed from its
current table and entered into one which is used for finger-
prints having a lower (predicted) probability of deduplica-
tion. For example, if a given fingerprint table contains the 5%
of the total number of stored data components that have the
highest probability of being deduplicated, and it is deter-
mined (or predicted) that the likelihood of the data corre-
sponding to the entry being deduplicated is not in the top 5%,
then the entry may be moved out its current fingerprint table
to a different fingerprint table. In addition to making any
changes (block 1612), the associated attributes may be
updated (block 1614). It is noted that movement of entries
between fingerprint tables need not be based on determined
probabilities of deduplication. Any desired algorithm for
determining which fingerprint table an entry is to be stored
may be used.

In addition to moving fingerprints between tables, infor-
mation stored in a given entry may be removed from all
fingerprint tables within a deduplication table. This eviction
of an entry may occur if the entry is determined from its
associated attributes to not be a probable candidate for dedu-
plication or if the block to which the entry refers is no longer
valid. For example, an entry that has not been deduplicated for
a given amount of time may be evicted from the deduplication
table. This eviction reduces the total size of the deduplication
table by removing entries corresponding to a data component
that have a relatively low probability of having a duplicate
stored in one of the data storage arrays 120a-1205. It is noted
that an entry may be removed from the deduplication table
even if that entry is the target of multiple virtual block point-
ers, since such removal may only preclude future deduplica-
tions and will not affect deduplications that have already
occurred.

In one embodiment, when an entry is evicted from the
deduplication table, an indication of the eviction may be
written to a corresponding physical location within one of the
data storage arrays 120a-1205. For example, a physical loca-
tion within one of the storage devices 176a-176m that cur-
rently stores or is going to store a corresponding data com-
ponent may be written with the indication. In one
embodiment, both the eviction from the deduplication table
and the marking with a corresponding indication in a data
physical storage location may occur during a write request, a
garbage collection operation, a trim operation, a secure erase
operation, and so forth. In such cases, both the entries in the
fingerprint tables and the data components stored within the
storage devices 176a-176m may be already moving or updat-
ing during these operations. Therefore, the marking of the
indication may not introduce a new write operation.

Turning now to FIG. 17, a generalized block diagram illus-
trating one embodiment of an entry storing attributes 1700 is
shown. It is noted that while FIG. 4 depicts all of the attribute
data as being stored as part of a single entry, in various
embodiments the attribute data may in fact be distributed over
multiple locations. In various embodiments, attributes asso-
ciated with a given block of data and/or corresponding fin-
gerprint may be used for a variety of purposes, including
where a corresponding fingerprint(s) is to be stored in the
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deduplication tables. For example, as discussed above, if a
given data component is determined or predicted to be highly
deduplicated, its fingerprint may be stored in a fingerprint
table used for more highly deduplicated data. Similarly, data
deemed less likely to be deduplicated has its fingerprint stored
in a lower probability fingerprint table. It is noted that
attributes associated with a given fingerprint may be stored
anywhere within the system. For example, such attributes
may be stored in association with corresponding data on a
LUN. Additionally, such attributes may be stored in dedupli-
cation tables, copies may be maintained in a variety of loca-
tions in the system, and otherwise.

As shown in the example, entry 1701 may hold an address
1703 A which may be a virtual address or a physical address.
Invarious embodiments, address 1703 A may refer to a single
address, or it may refer to arange of addresses. The entry 1701
may be accessed by a pointer value that matches the informa-
tion stored in the address field 1703 A. The information stored
in the remaining fields may correspond to a given data com-
ponent corresponding to a physical location in the storage
devices 176a-176m or a virtual address used by one of the
client computer systems 110a-100c. For a given physical or
virtual address the table entry 1701 may store an access rate
1703B, a total number of accesses 1703C, a data component
age 1703D, a data component size 1703E, a corresponding
storage device age 1703F, a deduplication rate 1703G, a total
number of deduplications 1703H, an error rate 17031 and a
total number of errors 1703] for the given component. In
addition, a status field 1703K may store an indication of valid
data within a respective entry. For a given physical or virtual
address, other attributes may be included such as a total
number of deduplications for an associated volume and a total
number of accesses for an associated volume. Although the
fields 1703-1712 are shown in this particular order, other
combinations are possible and other or additional fields may
be utilized as well. The bits storing information for the fields
1703-1712 may or may not be contiguous.

Referring now to FIG. 18, a block diagram illustrating one
embodiment of a system 1800 configured to maintain
attributes related to deduplication is shown. In one embodi-
ment, an attribute table 1830 may store attribute information
that is used to determine how much effort is put into dedupli-
cation for a received write transaction (e.g., such as discussed
in relation to FIGS. 15 and 3). Attribute table 1840 may store
attribute information that is used to determine where a given
fingerprint is stored within the system’s fingerprint tables
(e.g., as discussed in FIG. 3). For example, each of the entries
18424-1842/ in table 1840 may comprise the information
shown in attributes table entry 1701. In the example shown,
attribute tables 1830 and 1840 are shown as two distinct tables
for ease of illustration. However, it is noted that the attributes
described therein may be stored in any manner within the
system and may be spread across multiple locations. In vari-
ous embodiments, copies of such attributes may also be
cached or otherwise stored in different levels within a storage
hierarchy such that multiple copies of attribute information
may exists simultaneously.

In the embodiment shown, two paths (a read path and a
write path) through various components of the system may
generally be traversed depending on the type of transaction
received. In the example shown, a key 1810 corresponding to
a received transaction may be used for further processing in
the system. In one embodiment, the key 1810 may comprise
a volume identifier (ID) 1802, a logical or virtual address
1804, a snapshot ID 1806, a sector number 1808, and so forth.
In various embodiment, each of the previously discussed
storage controllers 170 within the data storage arrays 120a-
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1205 may support storage array functions such as snapshots,
replication and high availability. In addition, each of the stor-
age controllers 170 may support a virtual machine environ-
ment that includes a plurality of volumes with each volume
including a plurality of snapshots. In one example, a storage
controller 170 may support hundreds or thousands of vol-
umes, wherein each volume includes thousands of snapshots.
In one embodiment, a volume may be mapped in fixed-size
sectors, such as a 4-kilobyte (KB) page within storage devices
176a-176m. In another embodiment, a volume may be
mapped in variable-size sectors. In such embodiments, the
volume ID 1802, snapshot ID 1806, and sector number 1808
may be used to identify a given volume. Accordingly, a given
received read or write request may identify a particular vol-
ume, sector and length. Although the fields 1802-1808 are
shown in this particular order, other combinations are pos-
sible and other or additional fields may be utilized as well.
The bits storing information for the fields 1802-1808 may or
may not be contiguous.

In one embodiment, the key 1810 corresponding to a read
transaction may generally follow a read path, while a key
1810 that is part of a write transaction may follow a write
path. As shown, during a read, the key 1810 may be used to
index a mapping table 1820. The mapping table 1820 may
comprise a plurality of entries 18224-1822¢, wherein each
entry holds a virtual-to-physical mapping for a corresponding
data component. In this manner, the mapping table 1820 may
be used to map logical read requests from each of the client
computer systems 110a-110c to physical locations in storage
devices 176a-176m. It is noted that in various embodiments,
identified physical locations (e.g., represented by a physical
address) may be further remapped by storage 1880. As
shown, each of the entries 18224-1822¢g may hold a virtual
index 1824, a corresponding physical index 1826, and status
information 1828. Similar to the fields 1802-1808 within the
key 1810, the fields 1824-1828 are shown in a particular
order. However, other combinations are possible and other or
additional fields may be utilized as well. The physical index
1826 may generally be an identifier (e.g., a physical pointer or
address) used to identify a given physical location within the
storage devices 176a-176m. As described earlier, the physical
index 1826 may include sector numbers, data chunk and
offset numbers, track numbers, plane numbers, a segment
identifier (ID), and so forth. In addition, the status informa-
tion 1828 may include a valid bit which may be used to
indicate the validity of a corresponding mapping.

In one embodiment, the entries 18224-1822g within the
mapping table 1820 may be sorted such that the sorting is
done first by the volume ID 1802, then by the sector number
1808, and then by the snapshot ID 1806. This sorting may
serve to group the entries 1822a-1822g corresponding to
different versions of data components within different snap-
shots together. Such an arrangement may lead to fewer read
operations to find a given data component during a lookup
operation for a read request. During a garbage collection
operation, the operation may arrange the data components
within the storage devices 176a-176m in a sorted manner,
wherein the sorting is done first by the volume ID 1802, then
by the snapshot ID 1806, and then by the sector number 1808.
This may serve to group the data components in storage
devices 176a-176m that are logically adjacent into physically
adjacent locations.

In one embodiment, a physical index 1829 may be read
from the mapping table 1820 during a lookup operation cor-
responding to a received read request. The physical index
1829 may then be used to locate a physical location within the
storage devices 176a-176m. In some cases, a read request
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may include a length that spans multiple sectors. Therefore,
there may be multiple parallel lookups performed on the
mapping table 1820. In addition, there may be multiple read
operations sent to the storage devices 176a-176m to complete
a received read request from one of the client computer sys-
tems 1102-110c.

In addition to the above, the key 1810 may correspond to a
received write request and may follow a write path as shown.
In the example shown, the key 1810 may be conveyed to
either (or both) of attribute table 1830 and control logic 1860.
In one embodiment, attribute table 1830 stores attribute infor-
mation regarding the storage environment and/or data stored
within the system. In some embodiments, attribute table 1830
may correspond to a volume table. The attribute table 1830
may comprise a plurality of entries 18324-1832/, wherein
each entry holds attributes associated with a virtual address,
addresses, or range of addresses. Generally speaking,
attributes may be maintained for a subset of addresses in the
system. However, maintaining attributes for all addresses is
contemplated.

When a write request is received, control logic 1860 may
receive or otherwise access associated attributes from the
table 1830. In addition, control logic 1860 may receive user
inputs 1850. Received write requests may be placed in a
buffer upon receipt, such as a buffer within a non-volatile
random access memory (NVRAM). When the received write
request is buffered, an acknowledgment may be sent to the
corresponding one of'the client computer systems 110a-110c.
At a later time, an asynchronous process may flush the buff-
ered write operations to the storage devices 176a-176m.
However, deduplication may occur both prior to sending
write requests from the DRAM to the NVRAM and prior to
sending write requests from the NVRAM to the storage
devices 176a-176m. In cases where inline deduplication
detects a copy of the received write data already exists in the
system, the received write data may be discarded.

The user inputs 1850 may include identification of particu-
lar application and corresponding volumes that may have a
high probability of deduplication during the execution of the
identified particular applications. The identified applications
may include storage backup operations, given virtual
machine support applications, development software produc-
ing a particular type of development data, and so forth. The
user inputs 1850 may include identification of a range or a
pattern of virtual addresses used to identify corresponding
data components with an associated virtual index that satis-
fies the range or pattern with respect to a virtual index of a
current read/write request. For example, a given data compo-
nent may have a high probability of deduplication if the given
data component is located near a data component that is
currently being deduplicated. A stride may be used to identify
corresponding virtual data component indexes. In addition,
the user inputs 1850 may include administrative settings.

Control logic 1860 may comprise deduplication strategy
logic 1862, attributes update logic 1864, table entries move-
ment logic 1866, and mapping table update logic 1868 which
is configured to update mapping table 1820 (e.g., as described
in step 1520 of FIG. 15). The deduplication strategy logic
1862 may determine, for a search of a deduplication table, a
number of lookup operations to use for a search for both an
inline and a post-process deduplication operation. In addi-
tion, the deduplication strategy logic 1862 may determine a
number of lookup operations to use for each given storage
medium used to store information corresponding to the dedu-
plication table. Further details are provided later.

The attributes update logic 1864 within the control logic
1860 may determine which entries in the tables 1830 and
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1840 may be updated during an identified event, such as the
events listed above corresponding to block 414 of method
400. The table entries movement logic 1866 may determine
how entries within a deduplication table (e.g., fingerprint
tables corresponding to the deduplication table) are stored
and moved within the table. In addition, the logic 1866 may
determine a manner for storage and movement of stored data
in physical locations in storage devices 176a-176m. Simi-
larly, the logic 1866 may determine how virtual-to-physical
mappings are performed. For example, the logic 1866 may
perform mappings to group together deduplicated data com-
ponents. It is noted that while FIG. 17 (and other figures)
depicts selected arrows as being bidirectional and others as
unidirectional, this is not intended to be limiting. In various
embodiments, communication may occur in either or both
directions between any of the components in the system.

Referring now to FIG. 19, a generalized block diagram
illustrating one embodiment of a logical representation of a
deduplication table 1910 is shown. The information stored in
the deduplication table 1910 may provide a fast location
identification of data components stored in the data storage
arrays 120a-12056. The information stored in the deduplica-
tion table 1910 may include mappings between one or more
calculated fingerprint values for a given data component and
a physical pointer to a physical location in one of the storage
devices 176a-176m holding the given data component. In
addition, a length of the given data component and status
information for a corresponding entry may be stored in the
deduplication table 1910.

As described earlier, a chunking/partitioning algorithm
may produce a given data component 1902 from data corre-
sponding to a received request. A fingerprint algorithm 1904
of multiple fingerprint algorithms may then be selected and
used to produce a data component fingerprint 1906. The
resulting fingerprint value may then be used to access the
deduplication table 1910. In various embodiments, one or
more fingerprint algorithms may be supported and one fin-
gerprint algorithm may be more complex to perform than
another fingerprint algorithm. Accordingly, the given finger-
print algorithm may consume more computation time than
another. Additionally, some fingerprint algorithms may pro-
duce larger fingerprints than others and consume more stor-
age space. For example, an MDS type fingerprint algorithm
may be more complex to perform than a CRC32C fingerprint
algorithm. However, there may be fewer collisions, or false
matches, associated with the first algorithm. In another
example, the result of the fingerprint algorithm may be deter-
mined by keeping only some of the bits generated by a func-
tion such as MDS5 or CRC32C. Keeping more bits requires
more space, but may also reduce the likelihood of a collision.
A collision may cause a read of data stored in persistent
storage, such as the storage devices 176a-176m, for a subse-
quent comparison operation. The comparison may be per-
formed to verify whether a match found in the deduplication
table 1910 corresponds to data stored in persistent storage
that matches the value of the given data component 1902. In
addition, read operations for both data and attributes followed
by comparison operations may be performed to determine
which one of multiple matches may remain in persistent
storage during deduplication of redundant data. The read
operations and the comparison operations add processing
time to a deduplication operation.

Switching between a first and a second fingerprint algo-
rithm of multiple fingerprint algorithms may occur when a
strategy for deduplication changes. In one embodiment,
attributes such as those discussed above may be used by
control logic to determine a strategy and changes to a strategy
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for deduplication. For example, a first strategy that utilizes
less storage space for fingerprint values, but results in more
collisions, may be chosen. At a later time, a second strategy
may be chosen to replace the first strategy. The second strat-
egy may utilize more storage space for fingerprint values
resulting in fewer collisions. The later time for such a change
in strategy for deduplication may occur during a given iden-
tified event, such as the events described earlier in FIG. 3, or
otherwise.

Deduplication table 1910 may comprise entries for all or
only a portion of the data components stored in one or more of
data storage arrays 120a-1205. In one embodiment, the dedu-
plication table 1910 may not be complete and therefore may
nothave an entry for each stored data component. Also, one or
more entries within the deduplication table 1910 may be
evicted as further described later. In one embodiment, the
fingerprint tables 1920-1940 together comprise some or all of
adeduplication table depending on a chosen implementation.
In other embodiments, the fingerprint tables 1920 and 1930
store copies of information stored in fingerprint table 1940.
Further, the fingerprint table 1940 may be stored in volatile
and/or non-volatile storage within the system (e.g., such as
storage devices 176a-176m, RAM 172, processor cache(s),
etc.).

In one embodiment, a lookup operation into the dedupli-
cation table 1910 may be controlled by control logic in a
storage controller. For example, attribute information may be
used to determine how many of the fingerprint tables 1920-
1940 to search. In addition, a type of a storage medium storing
a given fingerprint table may determine how many input/
output (I/0) accesses may be used to search a given finger-
print table. For example, a search determined to have a limited
amount of time for lookup may access fingerprint tables
stored in a processor cache or a non-persistent storage, butnot
access any fingerprint tables stored in persistent storage.
Alternatively, a limited number of /O accesses may be
allowed to persistent storage. In addition, a lookup may
access only particular portions of the deduplication table
1910 based on an estimated probability of success.

Each entry in the fingerprint table 1940 may comprise one
or more calculated fingerprint values corresponding to a
given data component, such as fingerprints 1942a-1945q in a
first entry. Additionally, each of the fingerprints 19424-1945a
may be calculated from a different fingerprint algorithm. The
pointer 19464 may be a physical pointer or address for a given
physical location within the storage devices 176a-176m. In
addition, each entry may comprise status information, such as
the status field 1948aq in the first entry. The status information
may include a valid bit, a flag to indicate whether or not a
corresponding data component is a candidate for deduplica-
tion, a length of the corresponding data component, and so
forth.

Similar to the storage arrangement in the fingerprint table
1940, each entry in the fingerprint table 1930 may comprise
one or more calculated fingerprint values corresponding to a
given data component, such as fingerprint values 1932a-
19344 in a first entry. In some embodiments, the fingerprint
tables may be inclusive such that some of the fingerprint
values 19324-1934aq stored in the fingerprint table 1930 may
be copies of one or more of the fingerprint values 1942a-
19454, 19425-19455b, 1942m-1945m, and so forth, stored in
the fingerprint table 1940. In other embodiments, fingerprint
values stored in one table are exclusive of those stored in
another. All such embodiments are contemplated.

In one embodiment, the fingerprint table 1930 holds a
smaller number of entries than a number of entries in the
fingerprint table 1940. In addition, each entry in the finger-
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print table 1930 holds less information than an entry in the
fingerprint table 1940. Similarly, the fingerprint table 1920
may hold a smaller number of entries than a number of entries
in the fingerprint table 1930 and each entry in the fingerprint
table 1920 may hold less information than an entry in the
fingerprint table 1930. In other embodiments, fingerprint
table 1930 may not hold a smaller number of entries than that
of fingerprint table 1940. Rather, fingerprint table 1930 could
hold more entries, and each entry could hold more informa-
tion. Similarly, fingerprint table 1920 could be larger than one
or both of fingerprint table 1930 and fingerprint table 1940.
Although the fields 1922a-1948m within the fingerprint
tables 1920-1940 are shown in a particular order, other com-
binations are possible and other or additional fields may be
utilized as well. The bits storing information for the fields
19224-1948m may or may not be contiguous.

While fingerprint tables 1920-1940 are shown as tables, the
tables 1920-1940 may be data structures such as a binary
search tree, or an ordered binary tree, comprising a node-
based data structure. In addition, while three fingerprint
tables 1920-1940 are shown, different numbers of fingerprint
tables are possible and contemplated. Further, one or more
filters such as a Bloom filter may be included in the dedupli-
cation table 1910. In such an embodiment, the filter may be
accessed to quickly determine whether a calculated data com-
ponent fingerprint 1906 is within one or more of the finger-
print tables. For example, a filter may be configured to defini-
tively indicate that a data component is not stored in a data
table. If the filter does not rule out its presence, deduplication
processing may continue or the data component may be
stored in the data table.

As described earlier, a chosen fingerprint algorithm may be
used to calculate the data component fingerprint 1906. Sub-
sequently, the data component fingerprint 1906 may be used
to access the deduplication table 1910. The chosen fingerprint
algorithm may be also used to determine which fingerprint
values stored in the fingerprint tables 1920-1940 to compare
to the data component fingerprint 1906. For example, the
fingerprint table 1920 may store fingerprint values corre-
sponding to data components predicted to have a relatively
high probability of being deduplicated. In one embodiment,
fingerprint table 1920 may store information corresponding
to the 5% of the total number of stored data components that
have the highest probability of being deduplicated. The prob-
ability of deduplication for a given data component may be
based, at least in part, on the attributes stored in the attributes
table 640.

The data component fingerprint 1906 may access one or
more tables within deduplication table 1910. If no matching
fingerprint is found, then the corresponding data may be
scheduled to be written to one of the storage devices 176a-
176m. If a matching fingerprint is found, then the data corre-
sponding to the matching fingerprint may be retrieved from
storage and compared to the received write data. If the data is
determined to be identical, then a new link for the stored data
is created and the write data discarded. If the retrieved data is
not identical to the write data or no matching fingerprint for
the write data is found, then the write data is stored. In both
cases, a new virtual to physical mapping table entry (e.g., in
table 1820) may be created for the write as previously dis-
cussed.

Inone embodiment, the deduplication table 1910 may store
multiple entries for a given data component. For example, the
deduplication table 1910 may store an entry for a given 4 KB
page as well as a separate entry for each 1 KB block within the
given 4 KB page. Alternatively, a lookup into the deduplica-
tion table 1910 may occur at a granularity ofa 512-byte block.
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If a match is found and a duplicate copy of data stored in one
of'the data storage arrays 120a-1205 is found and verified, a
subsequent lookup of the next contiguous 512 bytes may be
performed. If a fingerprint value match is found for this data
block and a duplicate copy of data stored in one of the data
storage arrays 120-1205 is found and verified, a subsequent
lookup of the next contiguous 512 bytes may be performed.
This process may be repeated until no match is found. There-
fore, deduplication of data components may be found at a
finer granularity while also still maintaining table entries in
the deduplication table 1910 for larger sized data compo-
nents.

For a deduplication table 1910 that supports a finer granu-
larity of sizes for data components, more fingerprint value
hits may be produced during a lookup operation for a given
received write request. For a deduplication table 1910 that
supports a more coarse granularity of sizes for data compo-
nents, a higher storage efficiency may be achieved and fewer
fingerprint value hits may be produced during a lookup opera-
tion for a given received write request. In some embodiments,
a deduplicated data component may have neighboring data
components that have also been deduplicated. For example, a
given 512-byte data component may have a neighboring 512-
byte deduplicated component; thus forming a 1 KB dedupli-
cated block. In such a case, an entry may be added to the
deduplication table 1910 associated with the deduplicated 1
KB block. In this manner, data components and their corre-
sponding entries are effectively coalesced to form larger
blocks. Alternatively, a table entry within the deduplication
table 1910 corresponding to a larger data size may be divided
to produce multiple table entries with corresponding smaller
data sizes. Such a division may produce more fingerprint
value hits during a lookup into the deduplication table 1910.

Both a fingerprint algorithm and a data size or length cor-
responding to a table entry within the deduplication table
1910 may be reconsidered. Such reconsideration may occur
periodically, during identified events as described earlier in
FIG. 3, or at any other desired time. As may be appreciated,
making changes to the algorithm(s) used and/or data sizes
used may result in changes to calculation times and may alter
the probability of a collision. For example, increased data
collisions may incur additional read operations of a persistent
storage data location for a data comparison. Changes in the
supported data size may result in more deduplications of
smaller blocks or fewer deduplications of larger blocks. All
such ramifications should be taken into account when making
such changes.

In one embodiment, one or more entries within the dedu-
plication table 1910 may store a first fingerprint value for a
corresponding data component. A second fingerprint value
may be stored with the corresponding data component in one
of the storage devices 176a-176m. In various embodiments,
the first fingerprint value is a different and smaller fingerprint
value than the second fingerprint value. Different fingerprint
algorithms may be used to compute the first fingerprint value
and the second fingerprint value. In another example, the first
fingerprint value is a function of the fingerprint value (e.g., a
subset of bits of the fingerprint value) and the second finger-
print value is also a function of the same fingerprint value
(e.g., some or all of the remaining bits of the fingerprint
value). During a lookup into the deduplication table 1910,
when a subset or an entire value of the data component fin-
gerprint 1906 matches a first fingerprint value in a given table
entry, such as fingerprint 1932/ in the fingerprint table 1930,
a corresponding data storage location may be read. In
embodiments in which the first fingerprint value is a subset of
bits of the fingerprint value, a second fingerprint value may be
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stored in this data location in addition to a corresponding data
component. Either a second fingerprint value different from
the data component fingerprint 1906 or a subset of the data
component fingerprint 1906 may be compared to the stored
second fingerprint value. If there is a match, then a compari-
son may be performed between the stored data component
and a data component value corresponding to a received
read/write request, a garbage collection operation, or other-
wise.

In one embodiment, the deduplication table 1910 may be
partitioned in a manner to allow one or more nodes in a cluster
to process lookup operations for a given partition of the table.
Therefore, deduplication may occur across multiple nodes to
reduce storage space on a given node. A virtual-to-physical
mapping table, such as the mapping table 1820, may refer to
data components across multiple nodes for increased storage
efficiency. The deduplication table 1910 may still be stored
across storage devices within a cluster in the cluster and may
be repartitioned without moving any of the stored data. A
smaller portion of the deduplication table 1910, such as the
fingerprint tables 1920-1930 may be stored on each node
while a larger portion, such as the fingerprint table 1940, may
be partitioned. Each time a node joins or leaves a given
cluster, the deduplication table 1910 may be repartitioned
among the current nodes in the given cluster. The deduplica-
tion table 1910 may support one deduplication address space
across one or more volumes and snapshots on one or more
nodes in the given cluster. In various embodiments, the dedu-
plication table 1910 may be divided among several nodes to
increase the effective cache storage efficiency for a finger-
print lookup operation. This division of the deduplication
table 1910 may occur by fingerprint value, by fingerprint
algorithm, by an estimated probability of success, by a stor-
age strategy, by a random process, or otherwise.

In one embodiment, an entry is allocated, or registered,
within the deduplication table 1910 when a fingerprint lookup
operation into the deduplication table 1910 results in a miss.
This miss may occur during an inline deduplication operation
or a post-process deduplication operation. Additionally, as
previously discussed in FIG. 15, on a hit a link table may be
updated that stores links for deduplicated data. For example,
responsive to successfully deduplicating received write data,
anew entry is created in the link table. In some embodiments,
new table entries may be registered during a post-process
deduplication operation. In other words, during an inline
deduplication operation, a miss during a fingerprint lookup
into the deduplication table 1910 does not produce registra-
tion of a table entry. During a post-process deduplication
operation, a miss during a fingerprint lookup into the dedu-
plication table 1910 does produce registration of a table entry.
In one embodiment, a duplicate copy is verified during dedu-
plication by a matching fingerprint value. In another embodi-
ment, a duplicate copy is verified by both a matching finger-
print value and a matching value for a corresponding data
component. Numerous such embodiments are possible and
are contemplated.

Referring now to FIG. 20, one embodiment of a method
2000 for supporting multiple fingerprint tables is shown. In
various embodiments, the components discussed above, such
as network architecture 100, deduplication table 1910 and
fingerprint table(s) 1920 described above may generally oper-
ate in accordance with method 2000. For purposes of discus-
sion, the steps in this embodiment are shown in sequential
order. However, some steps may occur in a different order
than shown, some steps may be performed concurrently,
some steps may be combined with other steps, and some steps
may be absent in another embodiment.
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In block 2002, a number N (where N is an integer) of
fingerprint tables are determined to be supported and store
values, such as fingerprint values, corresponding to stored
data components. Each of the N fingerprint tables may have
an associated probability for corresponding data components
to be deduplicated. One or more of the N fingerprint tables
may be stored on a separate storage medium from the other
fingerprint tables. One or more ofthe N fingerprint tables with
the higher associated probabilities of deduplication may be
stored in a higher level of a memory hierarchy than the
remainder of the N fingerprint tables. For example, one or
more of the N fingerprint tables may be stored in RAM 172,
whereas the remainder of the N fingerprint tables may be
stored in persistent storage in storage devices 176a-176m. In
some embodiments, copies of one or more of the N fingerprint
tables may be stored in a higher level of the storage hierarchy.
Therefore, there may be two copies of the one or more N
fingerprint tables on separate storage media.

In block 2006, one or more events are identified for chang-
ing (or reevaluating) a storage strategy or arrangement for
entries within the N fingerprint tables. Examples of such
events may include a garbage collection operation, a pruning/
trimming operation, a secure erase operation, a reconstruct
read operation, a given stage in a read/write pipeline for a
received read/write request, a received batch operation that
accesses physical locations within persistent storage, a
received batch operation that transforms or relocates data
components within the persistent storage.

Inblock 2008, one or more attributes corresponding to data
components stored in the persistent storage are identified for
storage. The attributes may be used to change a storage strat-
egy or arrangement for entries within the N fingerprint tables.
Examples of such attributes include at least those discussed
above inrelationto FIG. 17. In block 2010, one or more of the
stored attributes may be updated as data components are aged
or accessed. In one embodiment, a given period of time and
each data storage access may be included as an event with the
events described regarding block 2006. If one of the identified
events occurs (decision block 2012), then in block 2014 one
or more of the attributes corresponding to one or more stored
data components are read for inspection. In block 2016, based
on the attributes that are read, one or more entries within the
N fingerprint tables may be moved from one fingerprint table
to another. Additionally, entries may be reordered within a
given fingerprint table based on their corresponding
attributes. For example, the entries may be sorted by one or
more stored fingerprint values for ease of lookup. One or
more entries may be promoted from a lower-level fingerprint
table to a higher-level fingerprint table, wherein entries within
the higher-level fingerprint table correspond to stored data
components that have a higher probability of being dedupli-
cated based on their attributes.

In addition to the above, one or more entries within the N
fingerprint tables may be evicted from the fingerprint table
1920 altogether. This eviction of one or more entries may
occur when a determination is made based on associated
attributes that the one or more entries correspond to stored
data components with a low probability of being dedupli-
cated. In addition, based on associated attributes, entries
within the N fingerprint tables may be evicted in order to
prevent deduplication among data components with a large
number of references, to remove entries that cause false
matches, or collisions, during a deduplication operation, and
to remove entries that no longer have a valid physical address
for the data component to which they refer.

As described earlier, for each entry that is evicted, in one
embodiment, an indication of the eviction may be written to a
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corresponding physical location within one of the data stor-
age arrays 120a-12054. In another embodiment, an indication
of the eviction may be written in an associated entry of
another data structure. A stored indication may allow for
reevaluation at a later time of a given evicted data component.
The associated attributes may be read and used to determine
whether the given evicted data component may now have a
probability of being deduplicated above a given threshold. If
it is determined the given evicted data component has a prob-
ability of being deduplicated above a given threshold, then a
corresponding entry may be allocated in one of the N finger-
print tables.

Referring now to FIG. 21, one embodiment of a method
2100 for eviction from a deduplication table is shown. In
block 2102, one or more conditions are identified for evicting
an entry from a deduplication table. Here, eviction refers to
removing information stored in a given entry from the entire
deduplication table. If a deduplication table includes multiple
fingerprint tables, such as tables 1920-1940, information
stored within a given entry may be removed and no longer be
stored in any of the fingerprint tables. In various embodi-
ments, data that is deemed to have a relatively low probability
of being deduplicated may have its entry removed from the
deduplication table(s). This eviction may in turn reduce the
size of the deduplication table and reduce an amount of effort
required to maintain the table.

In the example shown, the identified conditions for use in
determining eviction may include one or more of a size of the
deduplication table reaching a given threshold, a given data
component has a predicted probability of being deduplicated
that falls below a given threshold, a given data component has
ahistory of being deduplicated that falls below a given thresh-
old, a given data component with an associated large number
of references is identified as being removed from a dedupli-
cation operation, a given data component reaches a given
threshold for a number of false matches (collisions), and a
given data component does not have a valid physical address.
One or more attributes, such as the attributes discussed above
may be used to determine whether eviction may occur and to
identify one or more entries within a deduplication table for
eviction. In various embodiments, eviction may also occur
during garbage collection operations.

If conditions are satisfied for evicting a given entry in a
deduplication table (decision block 2104), then a correspond-
ing data component may be marked as being removed from
the table (block 2106). In one embodiment, an indication of
the eviction may be written to a corresponding physical loca-
tion within one of the data storage arrays 120a-1205, and the
given entry in the deduplication table may be deallocated
(block 2108). A stored indication may allow for reevaluation
at a later time of a given evicted data component.

Turning now to FIG. 22, one embodiment of a method 2200
for inserting an entry into a deduplication table is shown. In
block 2202, one or more conditions are identified for review-
ing a data component which does not currently have an entry
in the deduplication table. In one embodiment, one condition
for performing such a review may be initiation of a garbage
collection operation. Other examples of conditions may
include the occurrence of events identified in block 1606 in
method 1600, the conditions discussed in relation to method
2000, or otherwise. The timing of such a review may be set in
amanner to minimize or otherwise reduce the impact on other
system operations.

If conditions are satisfied for reviewing a data component
(decision block 2204), then corresponding attributes for the
given data component may be read and inspected (block
2206). For example, one or more attributes such as those
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discussed above may be used to determine whether insertion
may occur. In various embodiments, metadata within the
system indicates whether a corresponding data component
does or does not have a corresponding entry in the dedupli-
cation table. A given data component/entry may qualify for
insertion in the deduplication table when one or more condi-
tions for its exclusion are no longer valid, such as the condi-
tions described above regarding block 2102 of method 2100.
The attributes of a corresponding data component may
change over time and allow the data component to have an
associated entry in the deduplication table again.

If a given evicted entry qualifies to be reinserted in the
deduplication table (decision block 2208), then an entry in the
deduplication table is allocated for a corresponding data com-
ponent (block 2210) and any markings that indicate the data
component does not have an entry in the deduplication table
may be removed or invalidated.

Referring now to FIG. 23, a generalized block diagram
illustrating one embodiment of a system 2300 for maintaining
reverse address mappings using a link table 2310 is shown. As
described above, virtual-to-physical mapping information
may be stored in mapping table 1820. In addition, address-
mapping information may be stored in each page of data
within each of the storage devices 176a-176m. Each of the
data storage arrays 120a-1205 supports multiple virtual
addresses in requests from each of the client computer sys-
tems 110a-110c¢ referencing a same, single physical address.
For example, a first virtual address corresponding to client
110a and a second virtual address corresponding to client
1105 may reference a same data component or a same data
block identified by a same given physical address. In this
example, the first virtual address may have a value of “VX”.
The second virtual address may have a value of “VY”. The
same given physical address may have a value of “PA”. These
values are arbitrary and chosen to simplify the illustrated
example. The mapping table 1820 may store mapping infor-
mation such as “VX-to-PA” and “VY-to-PA”.

Over time, the first virtual address, “VX”, may later be
included in a write request from client 110a with modified
data. The new modified data may be written to one or more of
the storage devices 176a-176m. The new information for the
physical block may be stored in a physical location identified
by a new physical address different from the given physical
address. For example, the new physical address may have a
value “PB”, which is different from the value “PA” of the
given physical address. A new virtual-to-physical mapping
may be stored in a mapping table 1820, such as “VX-to-PB”.
The given physical address, “PA”, still has a link to one virtual
address, which is the second virtual address corresponding to
client 1105, or “VY-to-PA” stored in the table 1820. Subse-
quently, the second virtual address, “VY”, may later be
included in a write request from client 1105 with modified
data. Again, the new modified data may be written to one or
more of the storage devices 176a-176m. The new information
for the physical block may be stored in a physical location
identified by a new physical address different from the given
physical address. For example, the new physical address may
have a value “PC”, which is different from the value “PA” of
the given physical address. A new virtual-to-physical map-
ping may be stored in a corresponding table 1820, such as
“VY-to-PC”. The given physical address, “PA”, now has no
links to it. A garbage collection operation may deallocate the
physical block corresponding to the given physical address
“PA” due to a count of zero currently valid links and/or other
corresponding status information.

A problem may occur during garbage collection if inline
deduplication causes no update of mapping information. For
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example, when a write request from client 100a to virtual
address VX occurs, no matching fingerprint value 2306 may
be found in the fingerprint table 1920 during an inline dedu-
plication operation. Consequently, mapping may be stored in
the mapping table 1820, such as “VX-to-PA”, and a physical
data block may be scheduled to be written to the physical
address “PA”. In addition, the mapping information “VX-to-
PA” may be written with the data in the physical location
identified by physical address “PA”. Alternatively, the map-
ping information may be stored in a corresponding log in a
storage device, wherein the log corresponds to multiple
physical locations such as the location identified by the physi-
cal address A. In one embodiment, at this time, an entry may
be registered in the deduplication table 1910 corresponding to
this write request. In another embodiment, an entry may be
registered in the deduplication table 1910 corresponding to
this write request during a post-process deduplication opera-
tion. Regardless of when an entry is registered in the dedu-
plication table 1910, a corresponding entry may exist in the
deduplication table 1910 when a write request is received
from client 1105 to virtual address VY.

When the write request from client 1005 to virtual address
“VY” is received, a matching fingerprint value 2306 may be
found in the deduplication table 1910 corresponding to physi-
cal address PA and a match of the data verified. In such a case,
a mapping may be stored in the table 1820, such as “VY-to-
PA”. As a write of the data is not performed, the mapping
information “VY-to-PA” is not written with the data in the
physical location identified by physical address “PA”. Sub-
sequently, a later write request from client 100a to virtual
address “VX” may occur with new modified data. No match-
ing fingerprint value 2306 may be found in the deduplication
table 1910 during an inline deduplication operation, and a
corresponding mapping stored in the table 1820, such as
“VX-to-PB”. In this case, the mapping information “VX-to-
PB” may be written with the data in the physical location
identified by the physical address “PB”.

When the garbage collector is executed, the application
may inspect both the physical location identified by the physi-
cal address “PA” and the table 1820. The garbage collector
may find the mapping information, “VX-to-PA”, stored with
(or otherwise in association with) the corresponding page
identified by the physical address “PA”. However, no valid
corresponding entry in the table 1820 storing the same map-
ping information “VX-t0-PA” is found. In addition, no other
valid links to the physical address “PA” may be found,
although virtual address “VY” is referencing physical
address “PA”. Therefore, a count of links to the physical
address “PA” is erroneously determined to be zero. The gar-
bage collector may then deallocate the physical location iden-
tified by the physical address “PA”. Consequently, the link
corresponding to the mapping “VY-to-PA” is broken and data
corruption may have occurred.

In order to avoid the above problem without scheduling a
data write request to the storage devices 176a-176m, a link
table 2310 may be used. Although scheduling a write request
to update the mapping information from (“VX-to-PA”) to
(“VX-t0-PA”, “VY-to-PA”) stored in the physical location
identified by the physical address “PA” may prevent broken
links, the benefit of the inline deduplication operation would
be reduced and write amplification of SSDs may be increased.
Therefore, in order to address at least these issues, the link
table 2310 may be utilized to hold reverse mapping informa-
tion. The link table 2310 may comprise a plurality of entries
2320a-2320g. Each of the entries 23204-2320g may include
aphysical index 2324 that identifies a physical location in the
storage devices 176a-176m. In addition, one or more virtual
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indexes 23264-2326; may be included to provide reverse
mapping information. The status information 2328 may indi-
cate whether a corresponding entry stores one or more valid
reverse mappings.

In one embodiment, the link table 2310 has an entry allo-
cated or updated when an inline deduplication operation
determines a duplicate copy exists in storage for a corre-
sponding data component 2302. A corresponding physical
index 2337 found during the inline deduplication operation
may be used to update the link table 2310. Referring to the
above example, the link table 2310 may be updated with the
reverse mapping information “PA-to-VY” during processing
of'the write request from client 1105 to virtual address “VY™.
When the garbage collector is executed, it may inspect both
the physical location identified by the physical address “PA”,
the mapping table 1820 and the link table 2310. The garbage
collector may find the mapping information, “VX-to-PA”,
stored in the corresponding page identified by the physical
address “PA”. A valid corresponding entry in the table 1820
storing the same mapping information, “VX-to-PA”, may not
be found. However, the garbage collector may access the link
table 2310 with the physical address “PA” and find a valid
entry with the reverse mapping information “PA-to-VY”.
Therefore, a count of links to the physical address “PA” is
one, or nonzero. Accordingly, the garbage collector does not
deallocate the physical location identified by the physical
address “PA” and the problem discussed above is avoided. In
another embodiment, the data corresponding to “PA” is
stored in one location and the mapping information “VX to
PA” and “VY to PA” stored in another location. In yet another
embodiment, the data corresponding to “PA” is stored in one
location and the mappings “VX to PA” and “VY to PA” are
stored in a link table, but not adjacent to one another. Instead,
they may be stored in a table with a structure similar to that
described in FIG. 4, with the key for both mapping entries
being the physical address “PA” (or based at least in part on
the “PA”). For example, in such a table, “VX to PA” may be
stored in Level N-2 and “VY to PA” stored in Level N. A
lookup of “PA” in the table would then return both mappings.

In addition to the above, during garbage collection the
physical location identified by the physical address “PA” may
be updated with the mapping information “VY-to PA” due to
the valid entry in the link table 2310. Given such an update,
the entry in the link table 2310 may be deallocated. If the table
1820 is ever lost, the mapping information stored in the physi-
cal locations in the storage devices 176a-176m and the
reverse mapping information stored in the link table 2310
may be used to rebuild the table 1820. In one embodiment, the
deduplication table 2310, or a portion of the table 2310, may
be organized in a same manner as that of the mapping table
1820. Additionally, the link table 2310 may also be organized
in a same manner as the mapping table 1820.

As described above, when an inline deduplication opera-
tion determines a duplicate copy of data is stored in the
system, corresponding mapping information may be stored in
each of the table 1820 and the link table 2310 with no write of
the data to storage. These steps coordinate with garbage col-
lection that frees physical locations in the persistent storage.
The coordination may be relatively coarse since freeing
physical locations may be performed later and batched sepa-
rately from garbage collection migrating physical blocks
within a corresponding one of the storage devices 176a-
176m. Since migration may occur prior to deallocation of
physical locations during garbage collection, when a physical
block is moved a new physical location for data may have
stored mapping information updated with its own physical
address and updates stored in the mapping table 1820. Both
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corresponding log areas and page header information may be
updated. Afterward, the table 1820 may be updated with the
new physical addresses. Following this, the deduplication
table 1910 and then the link table 2310 may be updated with
the new physical addresses. This update removes links to the
old physical addresses.

If the deduplication table 1910 or the link table 2310 con-
tains old references, then the corresponding physical loca-
tions may be cleaned once more before it is freed. The dedu-
plication table 1910 may not be as compressible as the table
1820, since the fingerprint value and physical pointer pairs
may be random or more random than the entries in the table
1820. Further, the deduplication table 1910 may be less
cacheable, since the fingerprint values may be random and
table 1910 is indexed by fingerprint values. Regarding the
table 1820, entries corresponding to idle data, such as in idle
volumes, may be kept out of caches. Such factors result in
more read operations for a deduplication operation. There-
fore, the multiple fingerprint tables 1920-1940 are used and
allow one or more smaller tables to be cached. In one embodi-
ment, the tables corresponding to data components with a
higher probability being deduplicated may be accessed dur-
ing inline deduplication. The other tables may be accessed
during post-process deduplication, such as during garbage
collection.

FIG. 24 illustrates one embodiment of a portion of a gar-
bage collection process that may, for example, be used in a
storage system that supports deduplication. In the example
shown, an entry in the link table is read (block 2402) and a
virtual address read from the entry (block 2404). Using at
least a portion of the virtual address, an access of the mapping
table is performed (block 2406) and a determination made as
to whether there exists a valid address mapping for the virtual
address (decision block 2408). If there is a valid mapping,
then a new link table entry is updated to include the mapping
(block 2406), and a determination made as to whether there
are further virtual addresses to check in the current link table
entry (decision block 2408). If so, then the process continues
with block 2410. If there is no valid mapping for the virtual
address (decision block 2408), the process continues with
block 2412. Once there are no further virtual addresses to
check for the current link table entry (decision block 2412),
then a determination is made as to whether the new entry is
empty (i.e., no valid mappings have been found that corre-
spond to the current link table entry (decision block 2414). If
the new entry is empty, then the currently allocated block
corresponding to the current link table entry may be
reclaimed (block 2416). Otherwise, the new entry is written to
the link table (block 2420). If there are more link table entries
to examine (decision block 2418), then the process may pro-
ceed with block 2402. In addition to reclaiming storage, this
process may serve to consolidate link table mapping entries
into fewer entries.

Turning now to FIG. 25 and FIG. 26, further embodiments
and details regarding a garbage collection mechanism are
described. Generally speaking, the following describes a gar-
bage collection method whereby log entries and content
blocks are examined. Blocks which are identified as still
being in use are written to a new segment, while the remaining
blocks are reclaimed. For each block in the segment, we see if
there are any valid logical or virtual addresses that reference
it. This is done by reading the link table and looking up each
virtual address to see if it’s still a valid reference. If so, the
reference is added to a list of valid references for this block.
We also check the “direct” mapping entry that we get from the
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log entries in the segment itself. Again, if this virtual address
mapping is still valid, we add it to the list of valid pointers for
this block.

In addition to the above, the garbage collector can (option-
ally) attempt to find more duplicates for this block elsewhere
in the system by referencing deduplication tables. If any are
found, the logical addresses for them are added to the list of
valid references. FIG. 25 depicts one embodiment of a
method for identifying blocks which are still in use. In the
example shown, a list of currently valid blocks is generated by
examining link table entries and mapping table entries. The
upper block 2530 shown in FIG. 25 corresponds to examina-
tion of the link table and segment content descriptor table,
while the lower block 2540 corresponds to examination of the
mapping table.

In various embodiments, the segment content descriptor
table for a given segment includes mappings which refer to
blocks within the given segment. In various embodiments, the
segment content descriptor table is accurate at the time the
segment is written. However, after the segment is written,
writes to virtual addresses corresponding to blocks that are
stored in the segment may be received and the new write data
stored in a segment other than the given segment. These new
writes in turn cause new entries to be added to the mapping
table (e.g., table 340 or table 1820) for those virtual addresses.
These newer entries in the mapping table will supercede the
previous entries. While the mapping table is updated to reflect
these new writes, the segment content descriptor table for the
original segment is not updated. Rather, the segment content
descriptor table for the new segment which stores the new
write data reflects the new mapping. Consequently, there will
now exist multiple segment content descriptor tables which
include a mapping for a given virtual address. However, as
will be discussed in greater detail below, during garbage
collection an access to the mapping table may be used to
identify that the mapping in the original segment content
descriptor table is out of date.

In this example, garbage collection is performed by going
through segments in the log data which contains mapping
entries and content blocks (which may be compressed) them-
selves. The mapping entries in the log may include mapping
table entries, deduplication table entries, and link table
entries. In the embodiment of FIG. 25, the method includes
building a sorted list of link table entries for a segment. As
shown, the method begins with an access to the link table
(block 2500), link table entries are read from the link table
(block 2502), and added to a sorted list of entries for the given
segment (block 2504). If more link table entries remain (con-
ditional block 2506), the process continues at block 2502 by
adding more entries to the sorted list. In various embodi-
ments, the link table is ordered by segment number and then
logical address, and content blocks within a segment are
ordered by logical address. Consequently, the content blocks
in the segment may be traversed in the same order as they
occurin the link table. In alternative embodiments, the system
may scan several segments and order the list of entries by
logical address.

When it is determined that there are no further link table
entries to be processed for the current segment (conditional
block 2506), examination of the content descriptor table is
initiated (block 2508). In various embodiments, processing
may include utilization of a control structure such as a data-
base type cursor for traversing records in the table. In such an
embodiment, the cursor may be positioned at the start of the
segment content descriptor table (block 2508). Those skilled
in the art will appreciate other methods for traversing such
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content are possible, utilizing difterent types of control struc-
tures. Such alternative methods for traversal are contemplated
herein.

Subsequent to positioning the cursor at the beginning of the
content descriptor table, the next segment content descriptor
entry is read (block 2510), which is then added to the sorted
list of entries for the segment (block 2512). If there are more
segment content descriptor entries (conditional block 2514),
then the next entry is read (block 2510). If there are no further
segment content descriptor entries (conditional block 2514),
the sorted list to be used in further processing may be deemed
complete, and processing continues in lower block 2540.

While the steps in block 2530 are shown as operating on a
single segment, alternative embodiments may scan multiple
segments using similar steps, and combine the results into a
single sorted list to be processed in lower block 2540.

Lower block 2540 begins by examining the sorted list
created by upper block 2540. In the embodiment shown, the
first entry in the sorted list is accessed (block 2516). A virtual
address included in the list entry is then used as part of a query
to the mapping table (e.g., mapping table 1820 of FIG. 18). If
a valid mapping is identified for the virtual address in the
mapping table (conditional block 2520) and the mapping
corresponds to the data in the current segment, then the cor-
responding block is determined to be in use and the entry is
added to a list of entries which identify blocks to be copied to
a new segment (block 2524) and processing continues at
block 2522. If there is no match found in the mapping table
(conditional block 2520), then the entry is not added to the list
of blocks to be copied, and processing continues at block
2522. If there are more entries to be processed in the list
(conditional block 2522), then the next virtual address is used
in a query to the mapping table (block 2520). Once there are
no further entries to process (conditional block 2522), the list
of current blocks which will be copied to a new segment is
complete.

Having identified those blocks which remain in use, the
reclamation process may proceed as depicted in FIG. 26. In
the embodiment of FIG. 26, an upper block 2630 and lower
block 2640 are shown. Generally speaking, the upper block
2630 depicts the process of writing current blocks to a new
segment. In various embodiments, the upper block 2630 may
be performed without the lower block 2640. Lower block
2640 illustrates an embodiment in which deduplication may
be performed as part of the garbage collection process. As
will be discussed below, in such an embodiment current
blocks are first deduplicated before being written to a new
segment.

Inblock 2600 of FIG. 26, a cursor is set to a first entry inthe
list created as described above in FIG. 25 and the first entry
read (block 2602). As discussed above, the list includes an
identification of blocks which are in use and are to be written
to a new segment. Further, as noted above, various embodi-
ments may utilize other control structures than a database
type cursor. In an embodiment in which multiple segments
were scanned in block 2530, the system may maintain mul-
tiple cursors (e.g., one cursor per segment). In an embodiment
in which deduplication is not performed as part of the garbage
collection process, processing may proceed (as shown by the
dashed line) from block 2602 to block 2612 where the iden-
tified block is copied to the new data segment (block 2612)
and a new mapping table entry created (block 2614). How-
ever, in embodiments in which deduplication is performed,
processing proceeds from block 2602 to block 2604.

In conditional block 2604, the currently identified block is
deduplicated. Deduplication may be performed as described
above. If no duplicates are identified, then processing may
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proceed with block 2612 where the data is copied to the new
data segment. However, if it determined that the current block
can be deduplicated, then a further determination may be
made (conditional block 2606) as to whether the correspond-
ing data has already been written (i.e., this is not the first
instance of the data seen during this process 2640. If the data
has not yet been written, then the data is written to a new data
segment. In various embodiment, data which is deduplicated
as part of the garbage collection process may be written to a
different segment than data which is not deduplicated. How-
ever, it is noted that such segregation is not required. Subse-
quent to writing the data to a new segment (block 2608), a new
link table entry is created to map the data’s new location to a
virtual address (block 2610), and the mapping table updated
to include a corresponding virtual to physical address map-
ping entry (block 2614). If in conditional block 2606 it is
determined that deduplicated data has already been written to
anew data segment, then processing bypasses block 2608 and
proceeds with the new link table entry creation (block 2610).
New entries written to the link table and mapping table may
supercede existing entries in those tables.

Subsequent to updating the mapping table (block 2614), a
determination is made as to whether this is the last entry in the
list of blocks to be copied to a new segment (block 2616), if so
then segments built as part of the process(es) 2630 and 2640
are written to storage (block 2620). In an alternative embodi-
ment, an output segment is queued to be written as soon as it
is full, rather than waiting until all of the entries in the list are
processed. If there are further entries to process, then the
cursor is advanced to the next entry (block 2618), and the next
entry read (block 2602). Blocks identified in FIG. 25 and FIG.
26 as not being in use may be reclaimed. The method of FIG.
25 and FIG. 26 may be repeated for all of the blocks in the
segment(s) being garbage collected. Alternatively, garbage
collection may combine multiple segments in block 2530 and
process the combined result in blocks 2540, 2630, and 2640.

In various embodiments, old segments (the ones that were
garbage collected) are resubmitted to a queue for garbage
collection. They aren’t necessarily marked as being invalid at
this time. Rather, a segment may be marked as invalid when
the review of the segment reveals no valid information. Under
normal circumstances, this may happen when an already-
cleaned segment is submitted to a cleaner.

Itis noted that if garbage collection does not run to comple-
tion (e.g., crashes in the midst of a garbage collection pro-
cess), garbage collection may be run again on a partially-
collected segment. Blocks from an old segment that were
written out to a new segment will not be garbage collected
again, since they are no longer valid in the old segment.
Blocks that were not written out, but should have been, will be
garbage collected as normal. Accordingly, a separate process
is not needed to determine if there has been an error in gar-
bage collection, and a “roll back™ of garbage collection will
not be needed. Instead, the same process for garbage collec-
tion may be run on segments that may have few valid blocks,
and a segment marked as invalid when an entire census finds
no currently valid information in the segment.

It is also noted that in various embodiments multiple seg-
ments may be garbage collected concurrently. Such an
approach may permit blocks from multiple segments to be
sorted into fewer new segments, and possibly create multiple
“new” segments in order to group related blocks together in
different segments. “Related” blocks could be, for example,
related in that they compress well when compressed together
or they are likely to be accessed together. As noted above,
deduplicated blocks may be placed in a separate segment
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because such blocks will typically live longer than blocks that
aren’t referenced multiple times.

Still further, garbage collection may be used for other
processes at the same time as eliminating unreferenced data
blocks. For example, it may be used to change segment geom-
etry by creating larger or smaller segments, segments spread
across a different number of drives, or otherwise. This may be
accomplished by having the destination segment be a difter-
ent “shape” from the source segment(s). Garbage collection
may also be used to rebuild segments that have been damaged
by media failure. For example, when an attempt to read a
damaged block fails, the block may be rebuilt using redun-
dancy in the original segment.

In various embodiments, garbage collection may be opti-
mized in a variety of ways. First, selection of a segment to
submit for garbage collection may be optimized. In one
embodiment, it is not necessary to scan an entire segment to
determine if it is a good candidate. Rather, the process may
use the log entries at the front of the segment and see what
fraction are still valid. An estimate of how many deduplicated
blocks are in the segment can be made by traversing a small
range of the link table. In both cases, this may provide an
estimate of how many blocks may be recovered if garbage
collection is run. It is possible to remember the result of
multiple runs of this kind of scan and project how full a
segment is likely to be at some future time.

It is noted that the above-described embodiments may
comprise software. In such an embodiment, the program
instructions that implement the methods and/or mechanisms
may be conveyed or stored on a computer readable medium.
Numerous types of media which are configured to store pro-
gram instructions are available and include hard disks, floppy
disks, CD-ROM, DVD, flash memory, Programmable ROMs
(PROM), random access memory (RAM), and various other
forms of volatile or non-volatile storage.

Invarious embodiments, one or more portions of the meth-
ods and mechanisms described herein may form part of a
cloud-computing environment. In such embodiments,
resources may be provided over the Internet as services
according to one or more various models. Such models may
include Infrastructure as a Service (IaaS), Platform as a Ser-
vice (PaaS), and Software as a Service (SaaS). In IaaS, com-
puter infrastructure is delivered as a service. In such a case,
the computing equipment is generally owned and operated by
the service provider. In the PaaS model, software tools and
underlying equipment used by developers to develop soft-
ware solutions may be provided as a service and hosted by the
service provider. SaaS typically includes a service provider
licensing software as a service on demand. The service pro-
vider may host the software, or may deploy the software to a
customer for a given period of time. Numerous combinations
of'the above models are possible and are contemplated.

Although the embodiments above have been described in
considerable detail, numerous variations and modifications
will become apparent to those skilled in the art once the above
disclosure is fully appreciated. It is intended that the follow-
ing claims be interpreted to embrace all such variations and
modifications.

What is claimed is:

1. A computing system comprising:

a data storage medium;

a data storage controller configured to:

determine that a current segment within the data storage

medium is in use by identifying a valid mapping of a
location in the current segment to one or more virtual
addresses;
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copy data from the location in the current segment to a
new storage location in the data storage medium; and
reclaim the location in the current segment.

2. The system as recited in claim 1, wherein the data stor-
age controller is further configured to:

identify one or more entries in a first table comprising a

plurality of entries, wherein each of the one or more
entries of the first table comprises a reverse mapping of
an address of a location in the data storage medium to
one or more virtual addresses;

determine that the first table includes a valid mapping for a

virtual address; and

determine the mapping is valid responsive to determining

the first table includes at least one valid mapping for a
virtual address.

3. The system as recited in claim 1, wherein the data stor-
age controller is further configured to maintain a second table
comprising a plurality of entries, wherein each of the plurality
of entries of the second table maps a virtual address to a
location in the data storage medium.

4. The system as recited in claim 1, wherein prior to copy-
ing the data from the location to the new location, the method
further comprises deduplicating the data.

5. The system as recited in claim 4, wherein the data stor-
age controller is configured to the data from the location to the
new location in further response to determining the data has
not yet been copied to the new location.

6. The system as recited in claim 1, wherein the first table
is organized as a plurality of time ordered levels, each level
comprising a plurality of entries.

7. A method for use in a computing system, the method
comprising:

determining that a current segment within a data storage

medium is in use by identifying a valid mapping of a
location in the current segment to one or more virtual
addresses;

copying data from the location in the current segment to a

new storage location in the data storage medium; and
reclaiming the location in the current segment.
8. The method as recited in claim 7, further comprising:
identifying one or more entries in a first table comprising a
plurality of entries, wherein each of the one or more
entries of the first table comprises a reverse mapping of
an address of a location in the data storage medium to
one or more virtual addresses;
determining that the first table includes a valid mapping for
a virtual address; and

determining the mapping is valid responsive to determin-
ing the first table includes at least one valid mapping for
a virtual address.

9. The method as recited in claim 8, further comprising
maintaining a second table comprising a plurality of entries,
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wherein each of the plurality of entries of the second table
maps a virtual address to a location in the data storage
medium.

10. The method as recited in claim 8, wherein the first table
is organized as a plurality of time ordered levels, each level
comprising a plurality of entries.

11. The method as recited in claim 7, wherein prior to
copying the data from the location to the new location, the
method further comprises deduplicating the data.

12. The method as recited in claim 11, further comprising
copying the data from the location to the new location in
further response to determining the data has not yet been
copied to the new location.

13. A non-transitory computer readable storage medium
comprising program instructions, wherein said program
instructions are executable to:

determine that a current segment within a data storage

medium is in use by identifying a valid mapping of a
location in the current segment to one or more virtual
addresses;

copy data from the location in the current segment to a new

storage location in the data storage medium; and
reclaim the location in the current segment.

14. The non-transitory computer readable storage medium
as recited in claim 13, wherein said program instructions are
further executable to:

identify one or more entries in a first table comprising a

plurality of entries, wherein each of the one or more
entries of the first table comprises a reverse mapping of
an address of a location in the data storage medium to
one or more virtual addresses;

determine that the first table includes a valid mapping for a

virtual address; and

determine the mapping is valid responsive to determining

the first table includes at least one valid mapping for a
virtual address.

15. The non-transitory computer readable storage medium
as recited in claim 14, wherein said program instructions are
further executable to maintain a second table comprising a
plurality of entries, wherein each of the plurality of entries of
the second table maps a virtual address to a location in the
data storage medium.

16. The non-transitory computer readable storage medium
as recited in claim 14, wherein said program instructions are
further executable to organize the first table as a plurality of
time ordered levels, each level comprising a plurality of
entries.

17. The non-transitory computer readable storage medium
as recited in claim 13, wherein prior to copying the data from
the location to the new location, the program instructions are
further executable to deduplicate the data.
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